Splitting at the Gamma Point in NaH
Posted: Mon Jun 20, 2011 11:34 pm
Hello,
I have been doing some calculations on a system of NaH but I am having problems getting the LO-TO splitting that is typical of a polar system like this. This system has been studied before and it is known to have an LO-TO splitting at the gamma point if the effective charges are included in the calculation (Ke and Tanaka PRB 71 024117 (2005)).
I have ran calculations before on other system and been able to get LO-TO splitting, for instance on ZnTe (a simple zinc-blende structure) and the tutorial structure AlAs.
Here is my input file for the calculation of the DDB files (Sorry about the size):
****************************************************************************************************************
****************************************************************************************************************
# Crystalline NaH : computation of the phonon spectrum
ndtset 10
#Set 1 : ground state self-consistency
getwfk1 0 # Cancel default
# kptopt1 1 # Automatic generation of k points, taking
# into account the symmetry
nqpt1 0 # Cancel default
tolvrs1 1.0d-21 # SCF stopping criterion (modify default)
rfphon1 0 # Cancel default
prtwf1 1
#Q vectors for all datasets
#Complete set of symmetry-inequivalent qpt chosen to be commensurate
# with kpt mesh so that only one set of GS wave functions is needed.
#Generated automatically by running GS calculation with kptopt=1,
# nshift=0, shiftk=0 0 0 (to include gamma) and taking output kpt set
# file as qpt set. Set nstep=1 so only one iteration runs.
nqpt 1 # One qpt for each dataset (only 0 or 1 allowed)
# This is the default for all datasets and must
# be explicitly turned off for dataset 1.
#
qpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt3 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt4 2.50000000E-01 0.00000000E+00 0.00000000E+00
qpt5 5.00000000E-01 0.00000000E+00 0.00000000E+00
qpt6 2.50000000E-01 2.50000000E-01 0.00000000E+00
qpt7 5.00000000E-01 2.50000000E-01 0.00000000E+00
qpt8 -2.50000000E-01 2.50000000E-01 0.00000000E+00
qpt9 5.00000000E-01 5.00000000E-01 0.00000000E+00
qpt10 -2.50000000E-01 5.00000000E-01 2.50000000E-01
#nqpt 3-nkpt+2 are copied from make_qpt from kpt in
#the make_qpt.out file.
#insert nqpt 2 = gamma because it is the electrical part
#of the phonon around the gamma point. Think forces
#due to charges moving
#Set 2 : Response function calculation of d/dk wave function
iscf2 -3 # Need this non-self-consistent option for d/dk
# kptopt2 2 # Modify default to use time-reversal symmetry
rfphon2 0 # Cancel default
rfelfd2 2 # Calculate d/dk wave function only
tolwfr2 1.0d-25 # Use wave function residual criterion instead
prtwf2 1
#Set 3 : Response function calculation of Q=0 phonons and electric field pert.
getddk3 2 # d/dk wave functions from last dataset
# kptopt3 2 # Modify default to use time-reversal symmetry
rfelfd3 3 # Electric-field perturbation response only
#Sets 4-11 : Finite-wave-vector phonon calculations (defaults for all datasets)
getwfk 1 # Use GS wave functions from dataset1
kptopt 3 # Need full k-point set for finite-Q response
rfphon 1 # Do phonon response
rfatpol 1 2 # Treat displacements of all atoms
rfdir 1 1 1 # Do all directions (symmetry will be used)
tolvrs 1.0d-11 # This default is active for sets 3-10
prtden 0
prtwf 0
#######################################################################
#Common input variables
#Definition of the unit cell
acell 6.4410481435E+00 6.4410481435E+00 6.4410481435E+00 Bohr
rprim 7.0710678119E-01 7.0710678119E-01 0.0000000000E+00
0.0000000000E+00 7.0710678119E-01 7.0710678119E-01
7.0710678119E-01 0.0000000000E+00 7.0710678119E-01
xred 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
#Definition of the atom types
ntypat 2 # There are two types of atom
znucl 1 11 # The keyword "znucl" refers to the atomic number of the
# possible type(s) of atom. The pseudopotential(s)
# mentioned in the "files" file must correspond
# to the type(s) of atom. Here, type 1 is the Aluminum,
# type 2 is the Arsenic.
#Definition of the atoms
natom 2 # There are two atoms
typat 1 2 # The first is of type 1 (Al), the second is of type 2 (As).
#Gives the number of band, explicitely (do not take the default)
nband 10
#Definition of the planewave basis set
ecut 40 Ha # Maximal kinetic energy cut-off, in Hartree
#Definition of the k-point grid #DEFINED BY findk DIRECTORY
ngkpt 8 8 8
nshiftk 1
shiftk 3*0.0
#Definition of the SCF procedure
# iscf 7 # Self-consistent calculation, using algorithm 5
nstep 3000 # Maximal number of SCF cycles
diemac 12.0 # Although this is not mandatory, it is worth to
# precondition the SCF cycle. The model dielectric
# function used as the standard preconditioner
# is described in the "dielng" input variable section.
occopt 7
tsmear 0.01 eV
*********************************************************************************************
****************************************************************************************************************
I merge the DDB's out of this run using: mrgddb < merge.in
***************************************************************************
****************************************************************************************************************
merge.ddb.out
NaH phonons on 4 4 4 mesh
8
./phonstat/phonstato_DS3_DDB
./phonstat/phonstato_DS4_DDB
./phonstat/phonstato_DS5_DDB
./phonstat/phonstato_DS6_DDB
./phonstat/phonstato_DS7_DDB
./phonstat/phonstato_DS8_DDB
./phonstat/phonstato_DS9_DDB
./phonstat/phonstato_DS10_DDB
**************************************************************************
****************************************************************************************************************
Then I run a phonon band-structure calculation using anaddb on the merge.ddb.out calculated above.
where the input file for the anaddb calculation on the merged DDB is:
****************************************************************************************************************
*****************************************************************************************************************
!Input file for the anaddb code. Analysis of the NaH DDB
!Flags
ifcflag 1 ! Interatomic force constant flag
!Wavevector grid number 1 (coarse grid, from DDB)
brav 1 ! Bravais Lattice : 1-S.C., 2-F.C., 3-B.C., 4-Hex.)
ngqpt 4 4 4 ! Monkhorst-Pack indices
nqshft 1 ! number of q-points in repeated basic q-cell
q1shft 3*0.0
!Effective charges
asr 1 ! Acoustic Sum Rule. 1 => imposed asymetrically
chneut 1 ! Charge neutrality requirement for effective charges.
!Interatomic force constant info
dipdip 1 ! Dipole-dipole interaction treatment
!Phonon band structure output for band2eps - See note near end for
! dealing with gamma LO-TO splitting issue.
eivec 4
# This line added when defaults were changed (v5.3) to keep the previous, old behaviour
symdynmat 1
!Wavevector list number 2 (Cartesian directions for non-analytic gamma phonons)
!The output for this calculation must be cut-and-pasted into the
! t59_out.freq file to be used as band2eps input to get proper LO-TO
! splitting at gamma. Note that gamma occurrs twice.
nph2l 1 ! number of directions in list 2
qph2l 1.0 0.0 0.0 0.0
!Wavevector list number 1 (Reduced coordinates and normalization factor)
nph1l 1001 ! number of phonons in list 1
qph1l
0.5000 0.5000 0.5000 1.0
0.4975 0.4975 0.4975 1.0
0.4950 0.4950 0.4950 1.0
0.4925 0.4925 0.4925 1.0
0.4900 0.4900 0.4900 1.0
.
.
.
*****************************************************************************************
*****************************************************************************************
From what I can tell I am not doing anything that would not give me a correct LO-TO splitting at Gamma. But unfortunately I get none. All of my calculations are converged in the initial run that calculates the DDB's (there are 0 WARNING's and 0 COMMENT's in the log file).
However, when I look at the output of this run that generates the original DDB's I get the following which tells me there is a clear splitting seen around the Gamma point.
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
2.711776E-05 2.712757E-05 2.716443E-05 2.174407E-03 2.174407E-03
2.174407E-03
Phonon frequencies in cm-1 :
- 5.951661E+00 5.953813E+00 5.961904E+00 4.772271E+02 4.772271E+02
- 4.772271E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
2.711783E-05 2.712938E-05 2.716541E-05 2.174407E-03 2.174407E-03
4.041351E-03
Phonon frequencies in cm-1 :
- 5.951675E+00 5.954210E+00 5.962119E+00 4.772271E+02 4.772271E+02
- 8.869739E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 1.00000 0.00000
Phonon energies in Hartree :
2.711850E-05 2.712851E-05 2.716561E-05 2.174407E-03 2.174407E-03
4.041351E-03
Phonon frequencies in cm-1 :
- 5.951823E+00 5.954019E+00 5.962163E+00 4.772271E+02 4.772271E+02
- 8.869741E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 1.00000
Phonon energies in Hartree :
2.711965E-05 2.712771E-05 2.716525E-05 2.174407E-03 2.174407E-03
4.041350E-03
Phonon frequencies in cm-1 :
- 5.952075E+00 5.953845E+00 5.962084E+00 4.772271E+02 4.772271E+02
- 8.869739E+02
---------------------------------------------------------------------------------------------------------------------------------------------------------
However, at the end of the day when I am looking at the output of anaddb where it has analyzed the merged DDB. I get:
-------------------------------------------------------------------------------------------------------------------------------------------------------
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 2.173016E-03 2.173016E-03
2.173017E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 4.769218E+02 4.769219E+02
- 4.769222E+02
-------------------------------------------------------------------------------------------------------------------------
Which clearly tells me that anaddb does not see any phonon splitting (which is what I see in my plot, attached).
I've attached my abinit input file and my anaddb input file for viewing. and
I simply do not understand why my final answer out of anaddb does not have LO-TO splitting at the Gamma point. I would greatly appreciate any advice on this!
Thank you!
I have been doing some calculations on a system of NaH but I am having problems getting the LO-TO splitting that is typical of a polar system like this. This system has been studied before and it is known to have an LO-TO splitting at the gamma point if the effective charges are included in the calculation (Ke and Tanaka PRB 71 024117 (2005)).
I have ran calculations before on other system and been able to get LO-TO splitting, for instance on ZnTe (a simple zinc-blende structure) and the tutorial structure AlAs.
Here is my input file for the calculation of the DDB files (Sorry about the size):
****************************************************************************************************************
****************************************************************************************************************
# Crystalline NaH : computation of the phonon spectrum
ndtset 10
#Set 1 : ground state self-consistency
getwfk1 0 # Cancel default
# kptopt1 1 # Automatic generation of k points, taking
# into account the symmetry
nqpt1 0 # Cancel default
tolvrs1 1.0d-21 # SCF stopping criterion (modify default)
rfphon1 0 # Cancel default
prtwf1 1
#Q vectors for all datasets
#Complete set of symmetry-inequivalent qpt chosen to be commensurate
# with kpt mesh so that only one set of GS wave functions is needed.
#Generated automatically by running GS calculation with kptopt=1,
# nshift=0, shiftk=0 0 0 (to include gamma) and taking output kpt set
# file as qpt set. Set nstep=1 so only one iteration runs.
nqpt 1 # One qpt for each dataset (only 0 or 1 allowed)
# This is the default for all datasets and must
# be explicitly turned off for dataset 1.
#
qpt2 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt3 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt4 2.50000000E-01 0.00000000E+00 0.00000000E+00
qpt5 5.00000000E-01 0.00000000E+00 0.00000000E+00
qpt6 2.50000000E-01 2.50000000E-01 0.00000000E+00
qpt7 5.00000000E-01 2.50000000E-01 0.00000000E+00
qpt8 -2.50000000E-01 2.50000000E-01 0.00000000E+00
qpt9 5.00000000E-01 5.00000000E-01 0.00000000E+00
qpt10 -2.50000000E-01 5.00000000E-01 2.50000000E-01
#nqpt 3-nkpt+2 are copied from make_qpt from kpt in
#the make_qpt.out file.
#insert nqpt 2 = gamma because it is the electrical part
#of the phonon around the gamma point. Think forces
#due to charges moving
#Set 2 : Response function calculation of d/dk wave function
iscf2 -3 # Need this non-self-consistent option for d/dk
# kptopt2 2 # Modify default to use time-reversal symmetry
rfphon2 0 # Cancel default
rfelfd2 2 # Calculate d/dk wave function only
tolwfr2 1.0d-25 # Use wave function residual criterion instead
prtwf2 1
#Set 3 : Response function calculation of Q=0 phonons and electric field pert.
getddk3 2 # d/dk wave functions from last dataset
# kptopt3 2 # Modify default to use time-reversal symmetry
rfelfd3 3 # Electric-field perturbation response only
#Sets 4-11 : Finite-wave-vector phonon calculations (defaults for all datasets)
getwfk 1 # Use GS wave functions from dataset1
kptopt 3 # Need full k-point set for finite-Q response
rfphon 1 # Do phonon response
rfatpol 1 2 # Treat displacements of all atoms
rfdir 1 1 1 # Do all directions (symmetry will be used)
tolvrs 1.0d-11 # This default is active for sets 3-10
prtden 0
prtwf 0
#######################################################################
#Common input variables
#Definition of the unit cell
acell 6.4410481435E+00 6.4410481435E+00 6.4410481435E+00 Bohr
rprim 7.0710678119E-01 7.0710678119E-01 0.0000000000E+00
0.0000000000E+00 7.0710678119E-01 7.0710678119E-01
7.0710678119E-01 0.0000000000E+00 7.0710678119E-01
xred 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
#Definition of the atom types
ntypat 2 # There are two types of atom
znucl 1 11 # The keyword "znucl" refers to the atomic number of the
# possible type(s) of atom. The pseudopotential(s)
# mentioned in the "files" file must correspond
# to the type(s) of atom. Here, type 1 is the Aluminum,
# type 2 is the Arsenic.
#Definition of the atoms
natom 2 # There are two atoms
typat 1 2 # The first is of type 1 (Al), the second is of type 2 (As).
#Gives the number of band, explicitely (do not take the default)
nband 10
#Definition of the planewave basis set
ecut 40 Ha # Maximal kinetic energy cut-off, in Hartree
#Definition of the k-point grid #DEFINED BY findk DIRECTORY
ngkpt 8 8 8
nshiftk 1
shiftk 3*0.0
#Definition of the SCF procedure
# iscf 7 # Self-consistent calculation, using algorithm 5
nstep 3000 # Maximal number of SCF cycles
diemac 12.0 # Although this is not mandatory, it is worth to
# precondition the SCF cycle. The model dielectric
# function used as the standard preconditioner
# is described in the "dielng" input variable section.
occopt 7
tsmear 0.01 eV
*********************************************************************************************
****************************************************************************************************************
I merge the DDB's out of this run using: mrgddb < merge.in
***************************************************************************
****************************************************************************************************************
merge.ddb.out
NaH phonons on 4 4 4 mesh
8
./phonstat/phonstato_DS3_DDB
./phonstat/phonstato_DS4_DDB
./phonstat/phonstato_DS5_DDB
./phonstat/phonstato_DS6_DDB
./phonstat/phonstato_DS7_DDB
./phonstat/phonstato_DS8_DDB
./phonstat/phonstato_DS9_DDB
./phonstat/phonstato_DS10_DDB
**************************************************************************
****************************************************************************************************************
Then I run a phonon band-structure calculation using anaddb on the merge.ddb.out calculated above.
where the input file for the anaddb calculation on the merged DDB is:
****************************************************************************************************************
*****************************************************************************************************************
!Input file for the anaddb code. Analysis of the NaH DDB
!Flags
ifcflag 1 ! Interatomic force constant flag
!Wavevector grid number 1 (coarse grid, from DDB)
brav 1 ! Bravais Lattice : 1-S.C., 2-F.C., 3-B.C., 4-Hex.)
ngqpt 4 4 4 ! Monkhorst-Pack indices
nqshft 1 ! number of q-points in repeated basic q-cell
q1shft 3*0.0
!Effective charges
asr 1 ! Acoustic Sum Rule. 1 => imposed asymetrically
chneut 1 ! Charge neutrality requirement for effective charges.
!Interatomic force constant info
dipdip 1 ! Dipole-dipole interaction treatment
!Phonon band structure output for band2eps - See note near end for
! dealing with gamma LO-TO splitting issue.
eivec 4
# This line added when defaults were changed (v5.3) to keep the previous, old behaviour
symdynmat 1
!Wavevector list number 2 (Cartesian directions for non-analytic gamma phonons)
!The output for this calculation must be cut-and-pasted into the
! t59_out.freq file to be used as band2eps input to get proper LO-TO
! splitting at gamma. Note that gamma occurrs twice.
nph2l 1 ! number of directions in list 2
qph2l 1.0 0.0 0.0 0.0
!Wavevector list number 1 (Reduced coordinates and normalization factor)
nph1l 1001 ! number of phonons in list 1
qph1l
0.5000 0.5000 0.5000 1.0
0.4975 0.4975 0.4975 1.0
0.4950 0.4950 0.4950 1.0
0.4925 0.4925 0.4925 1.0
0.4900 0.4900 0.4900 1.0
.
.
.
*****************************************************************************************
*****************************************************************************************
From what I can tell I am not doing anything that would not give me a correct LO-TO splitting at Gamma. But unfortunately I get none. All of my calculations are converged in the initial run that calculates the DDB's (there are 0 WARNING's and 0 COMMENT's in the log file).
However, when I look at the output of this run that generates the original DDB's I get the following which tells me there is a clear splitting seen around the Gamma point.
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
2.711776E-05 2.712757E-05 2.716443E-05 2.174407E-03 2.174407E-03
2.174407E-03
Phonon frequencies in cm-1 :
- 5.951661E+00 5.953813E+00 5.961904E+00 4.772271E+02 4.772271E+02
- 4.772271E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
2.711783E-05 2.712938E-05 2.716541E-05 2.174407E-03 2.174407E-03
4.041351E-03
Phonon frequencies in cm-1 :
- 5.951675E+00 5.954210E+00 5.962119E+00 4.772271E+02 4.772271E+02
- 8.869739E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 1.00000 0.00000
Phonon energies in Hartree :
2.711850E-05 2.712851E-05 2.716561E-05 2.174407E-03 2.174407E-03
4.041351E-03
Phonon frequencies in cm-1 :
- 5.951823E+00 5.954019E+00 5.962163E+00 4.772271E+02 4.772271E+02
- 8.869741E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 1.00000
Phonon energies in Hartree :
2.711965E-05 2.712771E-05 2.716525E-05 2.174407E-03 2.174407E-03
4.041350E-03
Phonon frequencies in cm-1 :
- 5.952075E+00 5.953845E+00 5.962084E+00 4.772271E+02 4.772271E+02
- 8.869739E+02
---------------------------------------------------------------------------------------------------------------------------------------------------------
However, at the end of the day when I am looking at the output of anaddb where it has analyzed the merged DDB. I get:
-------------------------------------------------------------------------------------------------------------------------------------------------------
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 2.173016E-03 2.173016E-03
2.173017E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 4.769218E+02 4.769219E+02
- 4.769222E+02
-------------------------------------------------------------------------------------------------------------------------
Which clearly tells me that anaddb does not see any phonon splitting (which is what I see in my plot, attached).
I've attached my abinit input file and my anaddb input file for viewing. and
I simply do not understand why my final answer out of anaddb does not have LO-TO splitting at the Gamma point. I would greatly appreciate any advice on this!
Thank you!