When to use occopt 7?
Posted: Thu Jul 29, 2010 2:00 pm
Hi forum,
I need help with the calculation of the formation enthalpy of hcp Zn.
With the Zn PSP from the USppPAW table "Zn-gpbe-n-campos-mod" the formation enthalpy of 2.23 eV is too high (1.36 experiental) [ETOT(hcpZn) - 2* ETOT(Zn)]
My question is: Is "occopt 7" the correct choice to calculate hcp zinc and the zinc atom in a big box?
Do I have to consider anything else when calculating the Zn atom in a big box?
Thanks in advance for any comments.
Regards,
Marc
Attached you find my two input files
################
# hcp Zn
################
ndtset 1 jdtset 1
# Set 1 : Internal coordinate optimization
ionmov1 2 # Use BFGS algorithm for structural optimization
ntime1 50 # Maximum number of optimization steps
tolmxf1 1.0e-6 # Optimization is converged when maximum force
tolvrs1 1.0e-15 # Strict tolerance on (squared) residual of the SCF
occopt 7
tsmear 0.005
kptopt 1
ngkpt 3*24
nshiftk 1
shiftk 0.0 0.0 0.0
# Set 2 : Lattice parameter relaxation (including re-optimization of
# internal coordinates)
dilatmx2 1.1 # Maximum scaling allowed for lattice parameters
getwfk2 1 # Start with wave functions from dataset 1
getxred2 1 # Start with reduced coordinates from dataset 1
ionmov2 2 # Use BFGS algorithm
ntime2 120 # Maximum number of optimization steps
optcell2 2 # Fully optimize unit cell geometry, keeping symmetry
tolmxf2 1.0e-6 # Convergence limit for forces as above
strfact2 100 # Test convergence of stresses (Hartree/bohr^3) by
tolvrs2 1.0e-15 # Strict tolerance on (squared) residual of the SCF
acell 5.0441007830E+00 5.0441007830E+00 9.2546416431E+00 Bohr
angdeg 90 90 120
#Definition of the atom types and atoms
ntypat 1
znucl 30
natom 2
typat 1 1
xred 1/3 2/3 1/4
2/3 1/3 3/4
#Definition of the plane wave basis set
ecut 24 # Maximum kinetic energy cutoff (Hartree)
ecutsm 0.5 # Smoothing energy needed for lattice paramete
pawecutdg 48.0
#Definition of the self-consistency procedure
nstep 80 # Maxiumum number of SCF iterations
istwfk *1 # Do NOT take advantage of the time-reversal symmetry
#Definition of parallelization
paral_kgb 0 # Parallelize over k-points
wfoptalg 14 # Locally Optimal Block Preconditioned ConjugateGradient
fftalg 401 # FFT routines for MPI
fft_opt_lob 2 # Calls to getghc made parallel on set of bands nbdblock
npkpt 2 # Number of processors for k-point parallelization
npband 1 # Number of processors for band parallization
npfft 1 # Number of processors for fft parallelization
bandpp 1 # Bands per processor
iprcch 6 # Forces corrected with use of Harris functional formula
accesswff 1 # Make wave functions accessible via MPI I/O
For the Zn molecule I use a box with 3*24 Bohr and the same cut-off energy.
##################
# Zn Atom in big box
##################
ionmov 0 # Use BFGS algorithm for structural optimization
ntime 80 # Maximum number of optimization steps
tolmxf 1.0e-6 # Optimization is converged when maximum force
tolvrs 1.0d-16 # Strict tolerance on (squared) residual of the SCF
nband 8
occopt 7
tsmear 0.005
nsppol 2
kptopt 0
nkpt 1
kpt 0.0 0.0 0.0
kptnrm 1 wtk 1
diemac 1.5 diemix 0.2
nline 5 nsym 1
acell 3*24 Bohr
ntypat 1 znucl 30 natom 1 typat 1
xred 0 0 0
ecut 24 # Maximum kinetic energy cutoff (Hartree)
ecutsm 0.5 # Smoothing energy needed for lattice paramete
pawecutdg 48.0
nstep 80 # Maxiumum number of SCF iterations
istwfk *1 # Do NOT take advantage of the time-reversal symmetry
wfoptalg 14 # Locally Optimal Block Preconditioned ConjugateGradient
fftalg 401 # FFT routines for MPI
fft_opt_lob 2 # Calls to getghc made parallel on set of bands nbdblock
I need help with the calculation of the formation enthalpy of hcp Zn.
With the Zn PSP from the USppPAW table "Zn-gpbe-n-campos-mod" the formation enthalpy of 2.23 eV is too high (1.36 experiental) [ETOT(hcpZn) - 2* ETOT(Zn)]
My question is: Is "occopt 7" the correct choice to calculate hcp zinc and the zinc atom in a big box?
Do I have to consider anything else when calculating the Zn atom in a big box?
Thanks in advance for any comments.
Regards,
Marc
Attached you find my two input files
################
# hcp Zn
################
ndtset 1 jdtset 1
# Set 1 : Internal coordinate optimization
ionmov1 2 # Use BFGS algorithm for structural optimization
ntime1 50 # Maximum number of optimization steps
tolmxf1 1.0e-6 # Optimization is converged when maximum force
tolvrs1 1.0e-15 # Strict tolerance on (squared) residual of the SCF
occopt 7
tsmear 0.005
kptopt 1
ngkpt 3*24
nshiftk 1
shiftk 0.0 0.0 0.0
# Set 2 : Lattice parameter relaxation (including re-optimization of
# internal coordinates)
dilatmx2 1.1 # Maximum scaling allowed for lattice parameters
getwfk2 1 # Start with wave functions from dataset 1
getxred2 1 # Start with reduced coordinates from dataset 1
ionmov2 2 # Use BFGS algorithm
ntime2 120 # Maximum number of optimization steps
optcell2 2 # Fully optimize unit cell geometry, keeping symmetry
tolmxf2 1.0e-6 # Convergence limit for forces as above
strfact2 100 # Test convergence of stresses (Hartree/bohr^3) by
tolvrs2 1.0e-15 # Strict tolerance on (squared) residual of the SCF
acell 5.0441007830E+00 5.0441007830E+00 9.2546416431E+00 Bohr
angdeg 90 90 120
#Definition of the atom types and atoms
ntypat 1
znucl 30
natom 2
typat 1 1
xred 1/3 2/3 1/4
2/3 1/3 3/4
#Definition of the plane wave basis set
ecut 24 # Maximum kinetic energy cutoff (Hartree)
ecutsm 0.5 # Smoothing energy needed for lattice paramete
pawecutdg 48.0
#Definition of the self-consistency procedure
nstep 80 # Maxiumum number of SCF iterations
istwfk *1 # Do NOT take advantage of the time-reversal symmetry
#Definition of parallelization
paral_kgb 0 # Parallelize over k-points
wfoptalg 14 # Locally Optimal Block Preconditioned ConjugateGradient
fftalg 401 # FFT routines for MPI
fft_opt_lob 2 # Calls to getghc made parallel on set of bands nbdblock
npkpt 2 # Number of processors for k-point parallelization
npband 1 # Number of processors for band parallization
npfft 1 # Number of processors for fft parallelization
bandpp 1 # Bands per processor
iprcch 6 # Forces corrected with use of Harris functional formula
accesswff 1 # Make wave functions accessible via MPI I/O
For the Zn molecule I use a box with 3*24 Bohr and the same cut-off energy.
##################
# Zn Atom in big box
##################
ionmov 0 # Use BFGS algorithm for structural optimization
ntime 80 # Maximum number of optimization steps
tolmxf 1.0e-6 # Optimization is converged when maximum force
tolvrs 1.0d-16 # Strict tolerance on (squared) residual of the SCF
nband 8
occopt 7
tsmear 0.005
nsppol 2
kptopt 0
nkpt 1
kpt 0.0 0.0 0.0
kptnrm 1 wtk 1
diemac 1.5 diemix 0.2
nline 5 nsym 1
acell 3*24 Bohr
ntypat 1 znucl 30 natom 1 typat 1
xred 0 0 0
ecut 24 # Maximum kinetic energy cutoff (Hartree)
ecutsm 0.5 # Smoothing energy needed for lattice paramete
pawecutdg 48.0
nstep 80 # Maxiumum number of SCF iterations
istwfk *1 # Do NOT take advantage of the time-reversal symmetry
wfoptalg 14 # Locally Optimal Block Preconditioned ConjugateGradient
fftalg 401 # FFT routines for MPI
fft_opt_lob 2 # Calls to getghc made parallel on set of bands nbdblock