Errors when using prtdos=3 with paral_kgb=1
Posted: Thu Apr 26, 2012 11:27 pm
Dear all,
When I was trying to output the angular-momentum-resolved density of states (prtdos=3), I found that the program crashed if the kgb parallization is tuned on (paral_kgb=1).
The problem appears irrelavent to the specific atomic structure and can be avoided by either using prtdos=1,2, or disabling the kgb parallization. I'm using ABINIT/6.10.3 installed on NESRC as described at: https://www.nersc.gov/users/software/applications/materials-science/abinit/. Switching to the latest or older versions doesn't fix the problem.
The problem can be repeated using the ABINIT tutorial input file: "tpaw1_4.in" (a diamond unitcell) by simply adding the kgb parallization options and uncommenting the prtdos=3 instruction. Below is the log file:
The errors complained by the program is as following:
I have searched the forum and internet, but haven't seen directly related information. I'm wondering whether the problem arises from the specific architecture of the computer system and might be resolved by using certain compilation options.
Thanks in advance!
Zheng Liu
University of Utah
Salt Lake City, UT 84102
USA
When I was trying to output the angular-momentum-resolved density of states (prtdos=3), I found that the program crashed if the kgb parallization is tuned on (paral_kgb=1).
The problem appears irrelavent to the specific atomic structure and can be avoided by either using prtdos=1,2, or disabling the kgb parallization. I'm using ABINIT/6.10.3 installed on NESRC as described at: https://www.nersc.gov/users/software/applications/materials-science/abinit/. Switching to the latest or older versions doesn't fix the problem.
The problem can be repeated using the ABINIT tutorial input file: "tpaw1_4.in" (a diamond unitcell) by simply adding the kgb parallization options and uncommenting the prtdos=3 instruction. Below is the log file:
Code: Select all
ABINIT
Give name for formatted input file:
tpaw1_4.in
Give name for formatted output file:
tpaw1_4.out
Give root name for generic input files:
tpaw1_4i
Give root name for generic output files:
tpaw1_4o
Give root name for generic temporary files:
tpaw1_4tmp
.Version 6.10.3 of ABINIT
.(MPI version, prepared for a x86_64_linux_gnu0.0 computer)
.Copyright (C) 1998-2011 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read ~abinit/doc/users/acknowledgments.html for suggested
acknowledgments of the ABINIT effort.
For more information, see http://www.abinit.org .
.Starting date : Thu 26 Apr 2012.
- ( at 13h19 )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
=== Build Information ===
Version : 6.10.3
Build target : x86_64_linux_gnu0.0
Build date : 20111214
=== Compiler Suite ===
C compiler : gnu
CFLAGS : -O3
C++ compiler : gnu/opt/cray/xt-asyncpe/5.01/bin/CC:
CXXFLAGS : -O3
Fortran compiler : gnu0.0
FCFLAGS : -O3
FC_LDFLAGS :
=== Optimizations ===
Debug level : basic
Optimization level : standard
Architecture : amd_opteron
=== MPI ===
Parallel build : yes
Parallel I/O : yes
Time tracing : no
GPU support : no
=== Connectors / Fallbacks ===
Connectors on : yes
Fallbacks on : yes
DFT flavor : libxc+atompaw+bigdft-fallback+wannier90
FFT flavor : none
LINALG flavor : custom
MATH flavor : none
TIMER flavor : abinit
TRIO flavor : netcdf+etsf_io
=== Experimental features ===
Bindings : no
Exports : no
GW double-precision : no
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Default optimizations:
--- None ---
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
CPP options activated during the build:
CC_GNU CXX_GNU HAVE_DFT_ATOMPAW
HAVE_DFT_BIGDFT HAVE_DFT_LIBXC HAVE_DFT_WANNIER90
HAVE_FC_ALLOCATABLE_DT... HAVE_FC_CPUTIME HAVE_FC_EXIT
HAVE_FC_FLUSH HAVE_FC_GAMMA HAVE_FC_GETENV
HAVE_FC_INT_QUAD HAVE_FC_ISO_C_BINDING HAVE_FC_NULL
HAVE_FC_STREAM_IO HAVE_LINALG HAVE_LINALG_MPI
HAVE_LINALG_SCALAPACK HAVE_LINALG_SERIAL HAVE_MPI
HAVE_MPI2 HAVE_MPI_IO HAVE_MPI_TYPE_CREATE_S...
HAVE_OS_LINUX HAVE_STDIO_H HAVE_TIMER
HAVE_TIMER_ABINIT HAVE_TIMER_MPI HAVE_TIMER_SERIAL
HAVE_TRIO_ETSF_IO HAVE_TRIO_NETCDF USE_MACROAVE
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
- input file -> tpaw1_4.in
- output file -> tpaw1_4.outS
- root for input files -> tpaw1_4i
- root for output files -> tpaw1_4o
instrng : 51 lines of input have been read
iofn2 : Please give name of formatted atomic psp file
iofn2 : for atom type 1 , psp file is 6c.lda.test-2proj.atompaw
-P-0000 read the values zionpsp= 4.0 , pspcod= 7 , lmax= 1
2 0. : shape_type,rshape
-P-0000
-P-0000 inpspheads : deduce mpsang = 2, n1xccc = 1.
-P-0000 leave_test : synchronization done...
invars1m : enter jdtset= 0
invars1 : treat image number 1
symlatt : the Bravais lattice is cF (face-centered cubic)
xred is defined in input file
ingeo : takes atomic coordinates from input array xred
symlatt : the Bravais lattice is cF (face-centered cubic)
symlatt : the Bravais lattice is cF (face-centered cubic)
symspgr : the symmetry operation no. 1 is the identity
symspgr : the symmetry operation no. 2 is an inversion
symaxes : the symmetry operation no. 3 is a 2-axis
symplanes : the symmetry operation no. 4 is a d plane
symaxes : the symmetry operation no. 5 is a 2-axis
symplanes : the symmetry operation no. 6 is a d plane
symaxes : the symmetry operation no. 7 is a 2-axis
symplanes : the symmetry operation no. 8 is a d plane
symplanes : the symmetry operation no. 9 is a mirror plane
symaxes : the symmetry operation no. 10 is a 2_1-axis
symspgr : the symmetry operation no. 11 is a -4 axis
symaxes : the symmetry operation no. 12 is a 4_1 or 4_3-axis
symplanes : the symmetry operation no. 13 is a mirror plane
symaxes : the symmetry operation no. 14 is a 2-axis
symspgr : the symmetry operation no. 15 is a -4 axis
symaxes : the symmetry operation no. 16 is a 4_1 or 4_3-axis
symaxes : the symmetry operation no. 17 is a 3-axis
symspgr : the symmetry operation no. 18 is a -3 axis
symaxes : the symmetry operation no. 19 is a 3-axis
symspgr : the symmetry operation no. 20 is a -3 axis
symaxes : the symmetry operation no. 21 is a 3-axis
symspgr : the symmetry operation no. 22 is a -3 axis
symaxes : the symmetry operation no. 23 is a 3-axis
symspgr : the symmetry operation no. 24 is a -3 axis
symplanes : the symmetry operation no. 25 is a mirror plane
symaxes : the symmetry operation no. 26 is a 2_1-axis
symspgr : the symmetry operation no. 27 is a -4 axis
symaxes : the symmetry operation no. 28 is a 4_1 or 4_3-axis
symspgr : the symmetry operation no. 29 is a -4 axis
symaxes : the symmetry operation no. 30 is a 4_1 or 4_3-axis
symplanes : the symmetry operation no. 31 is a mirror plane
symaxes : the symmetry operation no. 32 is a 2-axis
symaxes : the symmetry operation no. 33 is a 3-axis
symspgr : the symmetry operation no. 34 is a -3 axis
symaxes : the symmetry operation no. 35 is a 3-axis
symspgr : the symmetry operation no. 36 is a -3 axis
symaxes : the symmetry operation no. 37 is a 3-axis
symspgr : the symmetry operation no. 38 is a -3 axis
symaxes : the symmetry operation no. 39 is a 3-axis
symspgr : the symmetry operation no. 40 is a -3 axis
symplanes : the symmetry operation no. 41 is a mirror plane
symaxes : the symmetry operation no. 42 is a 2-axis
symplanes : the symmetry operation no. 43 is a mirror plane
symaxes : the symmetry operation no. 44 is a 2_1-axis
symspgr : the symmetry operation no. 45 is a -4 axis
symaxes : the symmetry operation no. 46 is a 4_1 or 4_3-axis
symspgr : the symmetry operation no. 47 is a -4 axis
symaxes : the symmetry operation no. 48 is a 4_1 or 4_3-axis
symspgr : the symmetry operation no. 49 is a pure translation
symspgr : the symmetry operation no. 50 is an inversion
symaxes : the symmetry operation no. 51 is a 2_1-axis
symplanes : the symmetry operation no. 52 is a d plane
symaxes : the symmetry operation no. 53 is a 2_1-axis
symplanes : the symmetry operation no. 54 is a d plane
symaxes : the symmetry operation no. 55 is a 2-axis
symplanes : the symmetry operation no. 56 is a d plane
symplanes : the symmetry operation no. 57 is a tertiary m plane
symaxes : the symmetry operation no. 58 is a 2-axis
symspgr : the symmetry operation no. 59 is a -4 axis
symaxes : the symmetry operation no. 60 is a 4_1 or 4_3-axis
symplanes : the symmetry operation no. 61 is a tertiary m plane
symaxes : the symmetry operation no. 62 is a 2_1-axis
symspgr : the symmetry operation no. 63 is a -4 axis
symaxes : the symmetry operation no. 64 is a 4_1 or 4_3-axis
symaxes : the symmetry operation no. 65 is a 3, 3_1 or 3_2 axis
symspgr : the symmetry operation no. 66 is a -3 axis
symaxes : the symmetry operation no. 67 is a 3-axis
symspgr : the symmetry operation no. 68 is a -3 axis
symaxes : the symmetry operation no. 69 is a 3, 3_1 or 3_2 axis
symspgr : the symmetry operation no. 70 is a -3 axis
symaxes : the symmetry operation no. 71 is a 3-axis
symspgr : the symmetry operation no. 72 is a -3 axis
symplanes : the symmetry operation no. 73 is a tertiary m plane
symaxes : the symmetry operation no. 74 is a 2_1-axis
symspgr : the symmetry operation no. 75 is a -4 axis
symaxes : the symmetry operation no. 76 is a 4_1 or 4_3-axis
symspgr : the symmetry operation no. 77 is a -4 axis
symaxes : the symmetry operation no. 78 is a 4_1 or 4_3-axis
symplanes : the symmetry operation no. 79 is a mirror plane
symaxes : the symmetry operation no. 80 is a 2-axis
symaxes : the symmetry operation no. 81 is a 3, 3_1 or 3_2 axis
symspgr : the symmetry operation no. 82 is a -3 axis
symaxes : the symmetry operation no. 83 is a 3, 3_1 or 3_2 axis
symspgr : the symmetry operation no. 84 is a -3 axis
symaxes : the symmetry operation no. 85 is a 3-axis
symspgr : the symmetry operation no. 86 is a -3 axis
symaxes : the symmetry operation no. 87 is a 3-axis
symspgr : the symmetry operation no. 88 is a -3 axis
symplanes : the symmetry operation no. 89 is a tertiary m plane
symaxes : the symmetry operation no. 90 is a 2_1-axis
symplanes : the symmetry operation no. 91 is a tertiary m plane
symaxes : the symmetry operation no. 92 is a 2-axis
symspgr : the symmetry operation no. 93 is a -4 axis
symaxes : the symmetry operation no. 94 is a 4_1 or 4_3-axis
symspgr : the symmetry operation no. 95 is a -4 axis
symaxes : the symmetry operation no. 96 is a 4_1 or 4_3-axis
symspgr : the symmetry operation no. 97 is a pure translation
symspgr : the symmetry operation no. 98 is an inversion
symaxes : the symmetry operation no. 99 is a 2-axis
symplanes : the symmetry operation no. 100 is a d plane
symaxes : the symmetry operation no. 101 is a 2_1-axis
symplanes : the symmetry operation no. 102 is a d plane
symaxes : the symmetry operation no. 103 is a 2_1-axis
symplanes : the symmetry operation no. 104 is a d plane
symplanes : the symmetry operation no. 105 is a tertiary m plane
symaxes : the symmetry operation no. 106 is a 2-axis
symspgr : the symmetry operation no. 107 is a -4 axis
symaxes : the symmetry operation no. 108 is a 4_1 or 4_3-axis
symplanes : the symmetry operation no. 109 is a tertiary m plane
symaxes : the symmetry operation no. 110 is a 2_1-axis
symspgr : the symmetry operation no. 111 is a -4 axis
symaxes : the symmetry operation no. 112 is a 4_1 or 4_3-axis
symaxes : the symmetry operation no. 113 is a 3, 3_1 or 3_2 axis
symspgr : the symmetry operation no. 114 is a -3 axis
symaxes : the symmetry operation no. 115 is a 3-axis
symspgr : the symmetry operation no. 116 is a -3 axis
symaxes : the symmetry operation no. 117 is a 3-axis
symspgr : the symmetry operation no. 118 is a -3 axis
symaxes : the symmetry operation no. 119 is a 3, 3_1 or 3_2 axis
symspgr : the symmetry operation no. 120 is a -3 axis
symplanes : the symmetry operation no. 121 is a tertiary m plane
symaxes : the symmetry operation no. 122 is a 2-axis
symspgr : the symmetry operation no. 123 is a -4 axis
symaxes : the symmetry operation no. 124 is a 4_1 or 4_3-axis
symspgr : the symmetry operation no. 125 is a -4 axis
symaxes : the symmetry operation no. 126 is a 4_1 or 4_3-axis
symplanes : the symmetry operation no. 127 is a tertiary m plane
symaxes : the symmetry operation no. 128 is a 2_1-axis
symaxes : the symmetry operation no. 129 is a 3, 3_1 or 3_2 axis
symspgr : the symmetry operation no. 130 is a -3 axis
symaxes : the symmetry operation no. 131 is a 3-axis
symspgr : the symmetry operation no. 132 is a -3 axis
symaxes : the symmetry operation no. 133 is a 3, 3_1 or 3_2 axis
symspgr : the symmetry operation no. 134 is a -3 axis
symaxes : the symmetry operation no. 135 is a 3-axis
symspgr : the symmetry operation no. 136 is a -3 axis
symplanes : the symmetry operation no. 137 is a tertiary m plane
symaxes : the symmetry operation no. 138 is a 2-axis
symplanes : the symmetry operation no. 139 is a mirror plane
symaxes : the symmetry operation no. 140 is a 2_1-axis
symspgr : the symmetry operation no. 141 is a -4 axis
symaxes : the symmetry operation no. 142 is a 4_1 or 4_3-axis
symspgr : the symmetry operation no. 143 is a -4 axis
symaxes : the symmetry operation no. 144 is a 4_1 or 4_3-axis
symspgr : the symmetry operation no. 145 is a pure translation
symspgr : the symmetry operation no. 146 is an inversion
symaxes : the symmetry operation no. 147 is a 2_1-axis
symplanes : the symmetry operation no. 148 is a d plane
symaxes : the symmetry operation no. 149 is a 2-axis
symplanes : the symmetry operation no. 150 is a d plane
symaxes : the symmetry operation no. 151 is a 2_1-axis
symplanes : the symmetry operation no. 152 is a d plane
symplanes : the symmetry operation no. 153 is a tertiary m plane
symaxes : the symmetry operation no. 154 is a 2_1-axis
symspgr : the symmetry operation no. 155 is a -4 axis
symaxes : the symmetry operation no. 156 is a 4_1 or 4_3-axis
symplanes : the symmetry operation no. 157 is a mirror plane
symaxes : the symmetry operation no. 158 is a 2-axis
symspgr : the symmetry operation no. 159 is a -4 axis
symaxes : the symmetry operation no. 160 is a 4_1 or 4_3-axis
symaxes : the symmetry operation no. 161 is a 3, 3_1 or 3_2 axis
symspgr : the symmetry operation no. 162 is a -3 axis
symaxes : the symmetry operation no. 163 is a 3, 3_1 or 3_2 axis
symspgr : the symmetry operation no. 164 is a -3 axis
symaxes : the symmetry operation no. 165 is a 3-axis
symspgr : the symmetry operation no. 166 is a -3 axis
symaxes : the symmetry operation no. 167 is a 3-axis
symspgr : the symmetry operation no. 168 is a -3 axis
symplanes : the symmetry operation no. 169 is a tertiary m plane
symaxes : the symmetry operation no. 170 is a 2-axis
symspgr : the symmetry operation no. 171 is a -4 axis
symaxes : the symmetry operation no. 172 is a 4_1 or 4_3-axis
symspgr : the symmetry operation no. 173 is a -4 axis
symaxes : the symmetry operation no. 174 is a 4_1 or 4_3-axis
symplanes : the symmetry operation no. 175 is a tertiary m plane
symaxes : the symmetry operation no. 176 is a 2_1-axis
symaxes : the symmetry operation no. 177 is a 3, 3_1 or 3_2 axis
symspgr : the symmetry operation no. 178 is a -3 axis
symaxes : the symmetry operation no. 179 is a 3-axis
symspgr : the symmetry operation no. 180 is a -3 axis
symaxes : the symmetry operation no. 181 is a 3-axis
symspgr : the symmetry operation no. 182 is a -3 axis
symaxes : the symmetry operation no. 183 is a 3, 3_1 or 3_2 axis
symspgr : the symmetry operation no. 184 is a -3 axis
symplanes : the symmetry operation no. 185 is a tertiary m plane
symaxes : the symmetry operation no. 186 is a 2_1-axis
symplanes : the symmetry operation no. 187 is a tertiary m plane
symaxes : the symmetry operation no. 188 is a 2-axis
symspgr : the symmetry operation no. 189 is a -4 axis
symaxes : the symmetry operation no. 190 is a 4_1 or 4_3-axis
symspgr : the symmetry operation no. 191 is a -4 axis
symaxes : the symmetry operation no. 192 is a 4_1 or 4_3-axis
symspgr : spgroup= 227 Fd -3 m (=Oh^7)
inkpts : enter
getkgrid : length of smallest supercell vector (bohr)= 1.348131E+01
Simple Lattice Grid
symkpt : found identity, with number 1
inkpts : exit
npfft, npband, npspinor and npkpt 2 6 1 2
mpi_enreg%sizecart(1),np_fft = 2 2
mpi_enreg%sizecart(2),np_band = 6 6
mpi_enreg%sizecart(3),np_kpt = 2 2
mpi_enreg%sizecart(4),np_spinor= 1 1
in initmpi_grid : me_fft, me_band, me_spin , me_kpt are 0 0 0 0
invars1: mkmem undefined in the input file. Use default mkmem = nkpt
invars1: With nkpt_me= 1 and mkmem = 2, ground state wf handled in core.
Resetting mkmem to nkpt_me to save memory space.
invars1: mkqmem undefined in the input file. Use default mkqmem = nkpt
invars1: With nkpt_me= 1 and mkqmem = 2, ground state wf handled in core.
Resetting mkqmem to nkpt_me to save memory space.
invars1: mk1mem undefined in the input file. Use default mk1mem = nkpt
invars1: With nkpt_me= 1 and mk1mem = 2, ground state wf handled in core.
Resetting mk1mem to nkpt_me to save memory space.
Symmetries : space group Fd -3 m (#227); Bravais cF (face-center cubic)
inkpts : enter
getkgrid : length of smallest supercell vector (bohr)= 1.348131E+01
Simple Lattice Grid
symkpt : found identity, with number 1
inkpts : exit
chkneu : initialized the occupation numbers for occopt= 7
spin-unpolarized case :
2.00 2.00 2.00 2.00 0.00 0.00
npfft, npband, npspinor and npkpt 2 6 1 2
mpi_enreg%sizecart(1),np_fft = 2 2
mpi_enreg%sizecart(2),np_band = 6 6
mpi_enreg%sizecart(3),np_kpt = 2 2
mpi_enreg%sizecart(4),np_spinor= 1 1
in initmpi_grid : me_fft, me_band, me_spin , me_kpt are 0 0 0 0
getng is called for the coarse grid:
Subroutine Unknown:0:WARNING
The second and third dimension of the FFT grid, 0 0 were imposed to be multiple of the number of processors for the FFT, 2
For input ecut= 1.200000E+01 best grid ngfft= 16 16 16
max ecut= 1.390195E+01
==== FFT mesh ====
FFT mesh divisions ........................ 16 16 16
Augmented FFT divisions ................... 17 17 16
FFT algorithm ............................. 401
FFT cache size ............................ 16
getmpw: optimal value of mpw= 12
getng is called for the fine grid:
Using supplied coarse mesh as initial guess.
For input ecut= 2.400000E+01 best grid ngfft= 24 24 24
max ecut= 3.127939E+01
==== FFT mesh ====
FFT mesh divisions ........................ 24 24 24
Augmented FFT divisions ................... 25 25 24
FFT algorithm ............................. 401
FFT cache size ............................ 16
getdim_nloc : deduce lmnmax = 4, lnmax = 2,
lmnmaxso= 4, lnmaxso= 2.
setmqgrid : COMMENT -
The number of points "mqgrid" in reciprocal space used for the
description of the pseudopotentials has been set automatically
by abinit to : 3001.
setmqgrid : COMMENT -
The number of points "mqgriddg" in reciprocal space used for the
description of the pseudopotentials has been set automatically
by abinit to : 3001.
memory : analysis of memory needs
================================================================================
Values of the parameters that define the memory need of the present run
intxc = 0 ionmov = 0 iscf = 17 xclevel = 1
lmnmax = 4 lnmax = 2 mband = 6 mffmem = 1
P mgfft = 16 mkmem = 1 mpssoang= 2 mpw = 12
mqgrid = 3001 natom = 2 nfft = 2048 nkpt = 2
nloalg = 4 nspden = 1 nspinor = 1 nsppol = 1
nsym = 48 n1xccc = 1 ntypat = 1 occopt = 7
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 24 nfftf = 6912
================================================================================
P This job should need less than 3.464 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
WF disk file : 0.006 Mbytes ; DEN or POT disk file : 0.055 Mbytes.
================================================================================
Biggest array : f_fftgr(disk), with 0.8458 MBytes.
-P-0000 leave_test : synchronization done...
memana : allocated an array of 0.846 Mbytes, for testing purposes.
memana : allocated 3.464 Mbytes, for testing purposes.
The job will continue.
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- accesswff0 = 0 , fftalg0 =401 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- nproc = 24
-
-outvars: echo values of preprocessed input variables --------
These variables are accessible in NetCDF format (tpaw1_4o_OUT.nc)
accesswff 1
acell 6.7406531160E+00 6.7406531160E+00 6.7406531160E+00 Bohr
amu 1.20110000E+01
ecut 1.20000000E+01 Hartree
ecutsm 5.00000000E-01 Hartree
fft_opt_lob 2
iatsph0 1 2
iprcch 6
ixc 7
kpt -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kptrlen 1.34813062E+01
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
P mkmem 1
natom 2
natsph0 2
nband 6
nbdbuf 2
ngfft 16 16 16
ngfftdg 24 24 24
nkpt 2
npband 6
npfft 2
npkpt 2
nstep 10
nsym 48
ntypat 1
occ 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
occopt 7
paral_kgb 1
pawecutdg 2.40000000E+01 Hartree
pawmixdg 1
prtdos 3
prteig 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 227
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolwfr 1.00000000E-12
tsmear 5.00000000E-03 Hartree
typat 1 1
useylm 1
wfoptalg 14
wtk 0.75000 0.25000
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
8.9175000000E-01 8.9175000000E-01 8.9175000000E-01
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.6851632790E+00 1.6851632790E+00 1.6851632790E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 6.00000
================================================================================
-P-0000 leave_test : synchronization done...
chkinp: machine precision is 2.2204460492503131E-16
chkinp: Checking input parameters for consistency.
dtsetcopy : copying area algalch the actual size ( 1) of the index ( 1) differs from its standard size ( 0)
dtsetcopy : copying area atvshift the actual size ( 0) of the index ( 3) differs from its standard size ( 2)
dtsetcopy : copying area kberry the actual size ( 20) of the index ( 2) differs from its standard size ( 1)
dtsetcopy : copying area nband the actual size ( 2) of the index ( 1) differs from its standard size ( 1)
dtsetcopy : copying area mixalch the actual size ( 1) of the index ( 1) differs from its standard size ( 0)
dtsetcopy : copying area mixalch the actual size ( 1) of the index ( 2) differs from its standard size ( 0)
dtsetcopy : copying area shiftk the actual size ( 8) of the index ( 2) differs from its standard size ( 1)
DATA TYPE INFORMATION:
REAL: Data type name: REAL(DP)
Kind value: 8
Precision: 15
Smallest nonnegligible quantity relative to 1: 0.22204460E-15
Smallest positive number: 0.22250739-307
Largest representable number: 0.17976931+309
INTEGER: Data type name: INTEGER(default)
Kind value: 4
Bit size: 32
Largest representable number: 2147483647
LOGICAL: Data type name: LOGICAL
Kind value: 4
CHARACTER: Data type name: CHARACTER Kind value: 1
-P-0000
-P-0000 ================================================================================
-P-0000 == DATASET 1 ==================================================================
-P-0000
dtsetcopy : copying area algalch the actual size ( 1) of the index ( 1) differs from its standard size ( 0)
dtsetcopy : copying area atvshift the actual size ( 0) of the index ( 3) differs from its standard size ( 2)
dtsetcopy : copying area kberry the actual size ( 20) of the index ( 2) differs from its standard size ( 1)
dtsetcopy : copying area nband the actual size ( 2) of the index ( 1) differs from its standard size ( 1)
dtsetcopy : copying area mixalch the actual size ( 1) of the index ( 1) differs from its standard size ( 0)
dtsetcopy : copying area mixalch the actual size ( 1) of the index ( 2) differs from its standard size ( 0)
dtsetcopy : copying area shiftk the actual size ( 8) of the index ( 2) differs from its standard size ( 1)
setmqgrid : COMMENT -
The number of points "mqgrid" in reciprocal space used for the
description of the pseudopotentials has been set automatically
by abinit to : 3001.
setmqgrid : COMMENT -
The number of points "mqgriddg" in reciprocal space used for the
description of the pseudopotentials has been set automatically
by abinit to : 3001.
getdim_nloc : deduce lmnmax = 4, lnmax = 2,
lmnmaxso= 4, lnmaxso= 2.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
npfft, npband, npspinor and npkpt 2 6 1 2
mpi_enreg%sizecart(1),np_fft = 2 2
mpi_enreg%sizecart(2),np_band = 6 6
mpi_enreg%sizecart(3),np_kpt = 2 2
mpi_enreg%sizecart(4),np_spinor= 1 1
in initmpi_grid : me_fft, me_band, me_spin , me_kpt are 0 0 0 0
Unit cell volume ucvol= 7.6567760E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 12.000 => boxcut(ratio)= 2.15267
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 24.000 => boxcut(ratio)= 2.28325
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 31.279390 Hartrees makes boxcut=2
kpgio: loop on k-points done in parallel
-P-0000 leave_test : synchronization done...
- pspatm: opening atomic psp file 6c.lda.test-2proj.atompaw
Paw atomic data for element C - Generated by AtomPAW + AtomPAW2Abinit v3.2.1
- 6.00000 4.00000 20080326 znucl, zion, pspdat
7 7 1 0 505 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw4
basis_size (lnmax)= 2 (lmn_size= 4), orbitals= 0 1
Spheres core radius: rc_sph= 1.50000000
4 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 505 , AA= 0.21824E-02 BB= 0.13095E-01
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 500 , AA= 0.21824E-02 BB= 0.13095E-01
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 530 , AA= 0.21824E-02 BB= 0.13095E-01
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size= 644 , AA= 0.21824E-02 BB= 0.13095E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Radial grid used for pseudo valence density is grid 4
pspatm: atomic psp has been read and splines computed
4.14245303E+01 ecore*ucvol(ha*bohr**3)
-P-0000 wfconv: 6 bands initialized randomly with npw= 12, for ikpt= 1
-P-0000 leave_test : synchronization done...
newkpt: loop on k-points done in parallel
pareigocc : MPI_ALLREDUCE
setup2: Arith. and geom. avg. npw (full set) are 12.000 12.000
symatm: atom number 1 is reached starting at atom
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
symatm: atom number 2 is reached starting at atom
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
================================================================================
FFT (fine) grid used in SCF cycle:
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 24.000 => boxcut(ratio)= 2.28325
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 31.279390 Hartrees makes boxcut=2
chkpawovlp : WARNING -
PAW SPHERES ARE OVERLAPPING !
Distance between atoms 1 and 2 is : 2.91879
PAW radius of the sphere around atom 1 is: 1.50000
PAW radius of the sphere around atom 2 is: 1.50000
This leads to a (voluminal) overlap ratio of 0.11 %
COMPENSATION DENSITIES ARE OVERLAPPING !!!!
Distance between atoms 1 and 2 is : 2.91879
Compensation radius around atom 1 is: 1.50000
Compensation radius around atom 2 is: 1.50000
This leads to a (voluminal) overlap ratio of 0.11 %
THIS IS DANGEROUS !, as PAW formalism assume non-overlapping compensation densities.
=> Note that other spheres are overlapping !
Overlap ratio seems to be acceptable (less than value
of "pawovlp" input parameter): execution will continue.
But be aware that results might be approximate,
and even inaccurate (depending on your physical system) !
scfcv : before setvtr, energies%e_hartree= 0.0000000000000000
ewald : nr and ng are 3 and 11
setvtr : istep,n1xccc,moved_rhor= 1 1 0
scfcv : after setvtr, energies%e_hartree= 0.65263400489771806
****** TOTAL Dij in Ha (atom 1) *****
0.59558 0.00000 0.00000 0.00000
0.00000 -0.04628 0.00000 -0.00000
0.00000 0.00000 -0.04628 0.00000
0.00000 -0.00000 0.00000 -0.04628
ITER STEP NUMBER 1
vtorho : nnsclo_now= 2, note that nnsclo,dbl_nnsclo,istep= 0 0 1
-P-0000 leave_test : synchronization done...
vtorho: loop on k-points and spins done in parallel
newocc : new Fermi energy is 0.322680 , with nelect= 8.000000
Number of bissection calls = 9
newocc : computed new occ. numbers for occopt= 7 , spin-unpolarized case.
2.000 2.000 2.000 2.000 0.000 0.000
2.000 2.000 2.000 2.000 0.000 0.000
-P-0000 leave_test : synchronization done...
mkrho: loop on k-points and spins done in parallel
mkrho: echo density (plane-wave part only)
Total charge density [el/Bohr^3]
, Maximum= 2.4556E-01 at reduced coord. 0.1250 0.0625 0.2500
, Minimum= 1.0948E-02 at reduced coord. 0.5000 0.5000 0.0000
, Integrated= 7.3185E+00
-P-0000 leave_test : synchronization done...
*********** RHOIJ (atom 1) **********
1.40436 0.00000 0.00000 0.00000
0.00000 1.42552 0.00000 0.00000
0.00000 0.00000 1.42552 0.00000
0.00000 0.00000 0.00000 1.42552
*********** RHOIJ (atom 2) **********
1.40436 0.00000 0.00000 0.00000
0.00000 1.42552 0.00000 0.00000
0.00000 0.00000 1.42552 0.00000
0.00000 0.00000 0.00000 1.42552
vtorho: echo density (fine grid)
Total charge density [el/Bohr^3]
, Maximum= 3.1346E-01 at reduced coord. 0.0417 0.0417 0.3750
, Minimum= 1.0948E-02 at reduced coord. 0.5000 0.5000 0.0000
, Integrated= 8.0000E+00
ETOT 1 -11.510429432392 -1.151E+01 3.074E-10 7.492E+00
scprqt: <Vxc>= -5.0620718E-01 hartree
Simple mixing update:
residual square of the potential : 2.3563729959861677
****** TOTAL Dij in Ha (atom 1) *****
0.59194 -0.00000 -0.00000 -0.00000
-0.00000 -0.03301 -0.00000 -0.00000
-0.00000 -0.00000 -0.03301 -0.00000
-0.00000 -0.00000 -0.00000 -0.03301
ITER STEP NUMBER 2
vtorho : nnsclo_now= 2, note that nnsclo,dbl_nnsclo,istep= 0 0 2
-P-0000 leave_test : synchronization done...
vtorho: loop on k-points and spins done in parallel
newocc : new Fermi energy is 0.373161 , with nelect= 8.000000
Number of bissection calls = 9
newocc : computed new occ. numbers for occopt= 7 , spin-unpolarized case.
2.000 2.000 2.000 2.000 0.000 0.000
2.000 2.000 2.000 2.000 0.000 0.000
-P-0000 leave_test : synchronization done...
mkrho: loop on k-points and spins done in parallel
mkrho: echo density (plane-wave part only)
Total charge density [el/Bohr^3]
, Maximum= 2.3599E-01 at reduced coord. 0.1250 0.0625 0.2500
, Minimum= 1.2963E-02 at reduced coord. 0.5000 0.5000 0.0000
, Integrated= 7.3248E+00
-P-0000 leave_test : synchronization done...
*********** RHOIJ (atom 1) **********
1.34628 0.00000 0.00000 0.00000
0.00000 1.39984 0.00000 0.00000
0.00000 0.00000 1.39984 0.00000
0.00000 0.00000 0.00000 1.39984
*********** RHOIJ (atom 2) **********
1.34628 0.00000 0.00000 0.00000
0.00000 1.39984 0.00000 0.00000
0.00000 0.00000 1.39984 0.00000
0.00000 0.00000 0.00000 1.39984
vtorho: echo density (fine grid)
Total charge density [el/Bohr^3]
, Maximum= 3.0279E-01 at reduced coord. 0.0417 0.0417 0.3750
, Minimum= 1.2963E-02 at reduced coord. 0.5000 0.5000 0.0000
, Integrated= 8.0000E+00
ETOT 2 -11.461000831461 4.943E-02 1.969E-14 5.984E-01
scprqt: <Vxc>= -4.9854834E-01 hartree
At SCF step 2 max residual= 1.97E-14 < tolwfr= 1.00E-12 =>converged.
forstrnps: loop on k-points and spins done in parallel
-P-0000 leave_test : synchronization done...
-P-0000 leave_test : synchronization done...
strhar : before mpi_comm, harstr= 2.18684538193710913E-002 2.17520988894724862E-002 2.18684538193710289E-002 1.69799633650239353E-018 -7.20569223787541173E-003 1.30407034264519118E-017
strhar : after mpi_comm, harstr= 2.93255231629913245E-002 2.93255231629913730E-002 2.93255231629912620E-002 5.16744328845600772E-018 4.33680868994201774E-018 1.65101503784055259E-017
strhar : ehart,ucvol= 0.90943269681191363 76.567760275739516
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -4.99833608E-03 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -4.99833608E-03 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -4.99833608E-03 sigma(2 1)= 0.00000000E+00
ioarr: writing density data
ioarr: file name is tpaw1_4o_DEN
Subroutine Unknown:0:COMMENT
MPI/IO accessing FORTRAN file header: detected record mark length=4
ioarr: data written to disk file tpaw1_4o_DEN
partial_dos_fractions : rmax = 1.5000000000000000
Unit cell volume ucvol= 7.6567760E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
kpgio: loop on k-points done in parallel
Application 7109994 exit codes: 134
Application 7109994 resources: utime ~2s, stime ~1s
The errors complained by the program is as following:
Code: Select all
*** glibc detected *** abinit: double free or corruption (out): 0x0000000004e8bca0 ***
*** glibc detected *** *** glibc detected *** abinitabinit: : double free or corruption (out)munmap_chunk(): invalid pointer: 0x: 0x0000000004e8b2500000000004e8be80 ***
***
======= Backtrace: =========
[0x1de6eb4]
[0x1de8994]
[0xd34c62]
[0x94bb11]
[0x4c7ca7]
[0x4aa48b]
[0x498661]
[0x498cb2]
[0x47a455]
[0x41c1d8]
[0x40f6d7]
[0x40888f]
[0x40a5ff]
[0x1dc23e0]
[0x408029]
======= Memory map: ========
00400000-020d9000 r-xp 00000000 00:0d 787728 /var/spool/alps/7109994/abinit
022d8000-0233c000 rwxp 01cd8000 00:0d 787728 /var/spool/alps/7109994/abinit
0233c000-05050000 rwxp 00000000 00:00 0 [heap]
2aaaaaaab000-2aaaaaaac000 r-xp 00000000 00:00 0 [vdso]
2aaaaaaac000-2aaaaab24000 rwxs 00000000 00:04 787854 /dev/zero (deleted)
2aaaaab24000-2aaab2daf000 rwxs 00000000 00:04 17072128 /SYSV00000000 (deleted)
2aaab2daf000-2aaab2faf000 rwxs 00000000 00:00 0
2aaab2faf000-2aaab4faf000 rwxp 00000000 00:00 0
2aaab4faf000-2aaab51af000 rwxs 00000000 00:00 0
2aaab51af000-2aaab53af000 rwxs 00000000 00:00 0
2aaab53af000-2aaab55af000 rwxs 00000000 00:00 0
2aaab55af000-2aaab57af000 rwxs 00000000 00:00 0
2aaab57af000-2aaab59af000 rwxs 00000000 00:00 0
2aaab59af000-2aaab5baf000 rwxs 00000000 00:00 0
2aaab5baf000-2aaab5daf000 rwxs 00000000 00:00 0
2aaab8000000-2aaab803d000 rwxp 00000000 00:00 0
2aaab803d000-2aaabc000000 ---p 00000000 00:00 0
7fffffe0e000-7ffffffff000 rwxp 00000000 00:00 0 [stack]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]
======= Backtrace: =========
[0x1de6eb4]
[0xd34c62]
[0x94bb11]
[0x4c7ca7]
[0x4aa48b]
[0x498661]
[0x498cb2]
[0x47a455]
[0x41c1d8]
[0x40f6d7]
[0x40888f]
[0x40a5ff]
[0x1dc23e0]
[0x408029]
======= Memory map: ========
00400000-020d9000 r-xp 00000000 00:0d 787728 /var/spool/alps/7109994/abinit
022d8000-0233c000 rwxp 01cd8000 00:0d 787728 /var/spool/alps/7109994/abinit
0233c000-05050000 rwxp 00000000 00:00 0 [heap]
2aaaaaaab000-2aaaaaaac000 r-xp 00000000 00:00 0 [vdso]
2aaaaaaac000-2aaaaab24000 rwxs 00000000 00:04 787854 /dev/zero (deleted)
2aaaaab24000-2aaab2daf000 rwxs 00000000 00:04 17072128 /SYSV00000000 (deleted)
2aaab2daf000-2aaab2faf000 rwxs 00000000 00:00 0
2aaab2faf000-2aaab4faf000 rwxp 00000000 00:00 0
2aaab4faf000-2aaab51af000 rwxs 00000000 00:00 0
2aaab51af000-2aaab53af000 rwxs 00000000 00:00 0
2aaab53af000-2aaab55af000 rwxs 00000000 00:00 0
2aaab55af000-2aaab57af000 rwxs 00000000 00:00 0
2aaab57af000-2aaab59af000 rwxs 00000000 00:00 0
2aaab59af000-2aaab5baf000 rwxs 00000000 00:00 0
2aaab5baf000-2aaab5daf000 rwxs 00000000 00:00 0
2aaab5daf000-2aaab5faf000 rwxs 00000000 00:00 0
2aaab5faf000-2aaab61af000 rwxs 00000000 00:00 0
2aaab61af000-2aaab63af000 rwxs 00000000 00:00 0
2aaab63af000-2aaab65af000 rwxs 00000000 00:00 0
7fffffe0e000-7ffffffff000 rwxp 00000000 00:00 0 [stack]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]
======= Backtrace: =========
[0x1de6eb4]
[0x1de8994]
[0xd34c62]
[0x94bb11]
[0x4c7ca7]
[0x4aa48b]
[0x498661]
[0x498cb2]
[0x47a455]
[0x41c1d8]
[0x40f6d7]
[0x40888f]
[0x40a5ff]
[0x1dc23e0]
[0x408029]
======= Memory map: ========
00400000-020d9000 r-xp 00000000 00:0d 787728 /var/spool/alps/7109994/abinit
022d8000-0233c000 rwxp 01cd8000 00:0d 787728 /var/spool/alps/7109994/abinit
0233c000-0504d000 rwxp 00000000 00:00 0 [heap]
2aaaaaaab000-2aaaaaaac000 r-xp 00000000 00:00 0 [vdso]
2aaaaaaac000-2aaaaab24000 rwxs 00000000 00:04 787854 /dev/zero (deleted)
2aaaaab24000-2aaab2daf000 rwxs 00000000 00:04 17072128 /SYSV00000000 (deleted)
2aaab2daf000-2aaab2faf000 rwxs 00000000 00:00 0
2aaab2faf000-2aaab4faf000 rwxp 00000000 00:00 0
2aaab4faf000-2aaab51af000 rwxs 00000000 00:00 0
2aaab51af000-2aaab53af000 rwxs 00000000 00:00 0
2aaab53af000-2aaab55af000 rwxs 00000000 00:00 0
2aaab55af000-2aaab57af000 rwxs 00000000 00:00 0
2aaab57af000-2aaab59af000 rwxs 00000000 00:00 0
2aaab59af000-2aaab5baf000 rwxs 00000000 00:00 0
2aaab5baf000-2aaab5daf000 rwxs 00000000 00:00 0
2aaab5daf000-2aaab5faf000 rwxs 00000000 00:00 0
2aaab5faf000-2aaab61af000 rwxs 00000000 00:00 0
2aaab8000000-2aaab803d000 rwxp 00000000 00:00 0
2aaab803d000-2aaabc000000 ---p 00000000 00:00 0
7fffffe0e000-7ffffffff000 rwxp 00000000 00:00 0 [stack]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]
_pmii_daemon(SIGCHLD): [NID 00790] [c4-0c1s4n0] [Thu Apr 26 13:19:05 2012] PE 20 exit signal Aborted
[NID 00790] 2012-04-26 13:19:05 Apid 7109994: initiated application termination
I have searched the forum and internet, but haven't seen directly related information. I'm wondering whether the problem arises from the specific architecture of the computer system and might be resolved by using certain compilation options.
Thanks in advance!
Zheng Liu
University of Utah
Salt Lake City, UT 84102
USA