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Basic problems of FFT’s:

e Low ratio between floating point operations
and data (load/store’s)
3-dim FFT:

— N? data points
— 15N°log, (N) floating point operations

e Large data sets that do not fit into cache
e Highly nonlocal data access pattern

e [arge amount of communication for parallel FFT



Multiple 1-dim FFT’s for improved data locality
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Figure 1: The data access pattern for a multiple FFT, where five data sets of length eight
are transformed. A Fortran column major ordering is assumed. On the left, the inner loop
is over a single FFT sweep, resulting in a non-local data access pattern. On the right, the
inner loop runs over the five data sets, leading to good spatial data locality.



Rotation technique for a 3-dim FFT

Convention:

11, 12, 13 untransformed dimensions
I1, 12, I3 transformed dimensions

11,12, 13
13,11,12
12, 13,11

I1, 12,13



Cache blocking on hierarchical memory computers
(1l,12),13 — 112,13 — J, k, 13

k=1,..., lot
j=1,..,ml2=nl x n2/lot
ml2 x n3 < cache-size

OpenMP parallelization

Parallelize k loop



Performance results

Time (speedup) in seconds for a single 3-dim transform of size 1283

e on DEC Alpha, 666 MHz (.41 sec gives 540 Mflops)
Data from Philippe Blaise, Centre de Calcul CEA Grenoble

Numb. Proc.’s | DEC CXML | My OpenMP | My MPI | FFTW (serial/MPI)
serial .36 41 94 87
1 .87 41 (1)) 94 (1.) 1.31
2 37 25 (1.6) 50 (1.9) 99
4 20 16 (2.6) 27 (3.5) 45
8 18 17 (58.5) 47
16 13 12 (7.8) 47
e IBM Power3
Data from Andrew Canning, NERSC, Berkeley

Numb. of Proc.’s 1 2 4 8 16
time (speedup) Bl (1) | 402.) | .21 3.9) | .12(6.7) | .09 (9.0)




3-dim FFT algorithm for distributed memory

Input:

multiple 1-dim FFT:
Rotation:

multiple 1-dim FFT:

Rotation:

Previous data set reformatted:

Copy:

MPI_ALLTOALL:

Previous data set reformatted:

multiple 1-dim FFT:

Copy:

i1,12,33, (jp3)
i1,12,33, (3p3)
12,111,733, (ip3)
I2,1I1,33, (ip3)
I1,12,33, (jp3)
11,32,3p2,33, (1p3)
11,J2,33,Jp2, (ip3)
11,J2,33,jp3, (Jp2)
11,J2,13, (Jp2)
I1,J2,13, (Jp2)

I1,13,J2, (Jp2)



Results for single 3-dim FFT on massively parallel machines
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Figure 2: The parallel performance of a 128 FFT on the Cray T3E, IBM SP2 and SGI
Origin2000. On the Cray we show both the performance of our implementation and that

of the PCCFFT3D library, denoted by “lib”



Multiple 3-dim FFT’s on multiprocessor nodes

Overlap communication and computation

GROUP 0

GROUP 1

GROUP 2

GROUP 3

GROUP 0

GROUP 1

GROUP 2

GROUP 3



Multiple 3-dim convolutions on multiprocessor nodes

Application of local potential on wavefunction is a convolution

e FFT from Fourier into real space with zero padding to eliminate aliasing errors
e Multiplication of wavefunction with potential in real space

e FFT from real into Fourier space

Advantages:

e Since the data sets in Fourier space are 8 times smaller than in real space the amount
of communication can be reduced

e Cache blocking can be done in a combined way for the last sweep in the initial FFT

the multiplication with the potential in real space and the first sweep of the final
FFT



Results for multiple 3-dim convolutions massively parallel machines

Table 1: Timings, [speed in Gflops] and (speedup) of the MPI and mixed OpenMP/MPI

implementation on a Crat XT3 and a Compaq SC for 3-dim multiple FFTs.

1 XT3 MPI SC MPI SC 1 mixed | SC2 mixed | SC 4 mixed
1 2.91 2.93 1.72 (1.7) 0.84 (3.5)
2 1.0 [2.3] 1.63 (1.8) 1.62 (1.8) 0.84 (3.5) 0.45 (6.6)
4 52 [4.6] 0.88 (2.5) 0.88 (3.3) 0.46 (6.3) 0.25(11.9)
8 25 [9.5] 0.54 (5.4) 0.47 (6.3) 0.25 (12.0) 0.14 (20.3)
16 13 [19] 0.25 (11.7) 0.24 (12.3) 0.13(22.9) | 0.081 (36.4)
32 071 [34] 0.13 (22.7) 0.13 (22.6) | 0.075(38.9) | 0.050 (58.4)
64 .034 [70] 0.066 (43.8) || 0.067 (43.7) | 0.037 (79.0) | 0.032 (91.8)
128 018 [134] | 0.040 (72.0) || 0.036 (81.2) | 0.019 (158) | 0.018 (163)




Conclusion

e Even though standard single FFT’s are difficult to parallelize, convolutions can give
very high performance on massively parallel computers with fast networks
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Parallelization of Wavelet based version of Abinit

2 types of datastructures

e Convolutions and fast wavelet transformations are not parallelized. Each processor
treats one or several orbitals.

I,1o0rb, (jorb)

e In the orthogonalization part each processor has a fraction of the coefficients of
all the wavefunctions. This datastructure is obtained from the previous one in the
following way:

1, J,1orb, (jorb)
Copy: 1,10rb, J, (Jorb)
MPI alltoall i,1o0rb, jorb, (7J)

i, TORB, (5)



