
Specifications for the
Nanoquanta-ETSF
NetCDF file format

V. Olevano, M. Verstraete,
C. Freysoldt, Y. Pouillon,

X. Gonze, A. Cucca and D. Caliste

File -etsf.nc
● It can contain:

– Crystallographic Data

– Density

– Potentials

– Electronic Structure (Wavefunctions +
Energies)

● Purpose:
– Exchange between DFT codes
– DFT and else (postprocessing on density,

TDDFT, BSE, GW, Quantum Transport)
– Even between ab initio codes and non ab

initio ones (Tight Binding, DMFT)

Why NetCDF?

● High Portability: little/big-endian
problem free; machine precision free;

● Versatile: readable from Fortran, C,
Java, Python, Perl, ...

● Efficiency (or better, efficiency in
perspective): however, first save
human time, and then computer;

● Incremental: you can add further
data and the old reading interfaces
still work -> High backcompatibility.

-etsf.nc characteristics
● It can be Compact: all the informations

(chrystallographic data, density, potentials and
wavefunctions) about a system in a single file (sparse
information in many files, in many directories, usually
leads to human errors in managing).

● But you can also split information however you want ->
parallelization (VO & MV do not advise)

● Versatility and Redundancy: You can write only the
mandatory data (advised), or also the optional

● If your code does not contain enough physics to write a
mandatory data, we however encourage you to write a
-etsf.nc file by using the alternative optional data. This
will rely on the reading code; hoping that it will contain
enough physics to anyway interpret your information.

NetCDF philosophy:
writing

use netcdf

nf90_create(“foo-etsf.nc”,nf90_clobber,ncid) ! opening

nf90_put_att(ncid,nf90_global,”title”,”Silicon bulk, Si 1s corehole, etc.”) ! global attribute

nf90_def_dim(ncid,”number_of_kpoints”,4,nkdimid) ! Dimensions decl.

nf90_def_var(ncid,”kpoint_weights”,nf90_double, (/nkdimid /), kwid) ! Variables decl.

nf90_enddef(ncid)

nf90_put_var(ncid,kwid, (0.125, 0.25, 0.25, 0.375)) ! write Variables

nf90_close(ncid) ! closing

NetCDF philosophy:
reading

use netcdf

nf90_open(“foo-etsf.nc”,nf90_nowrite,ncid) ! opening

s= nf90_inquire_attribute(ncid,nf90_global,”title”,len=tl) ! inquire global attribute

if(s /= nf90_noerr) nf90_get_attribute(ncid,nf90_global,”title”,filetitle) ! get global attribute

s= nf90_inq_dimid(ncid,”number_of_kpoints”,nkdimid) ! check if dimension exists

if(s/=nf90_noerr) nf90_inquire_dimension(ncid,nkdimid,len=nk) ! read dimension

s= nf90_inq_varid(ncid,”reduced_coordinates_of_kpoint”,kvid) ! check if Variable exists

if(s/=nf90_noerr) nf90_get_var(ncid,kvid,kpoints) ! read Variable

else try_to_manage_if_this_does_not_exist(....) ! or try to read other ...

nf90_close(ncid) ! closing

Hence, if you caught the right
philosophy behind NetCDF,

what is correct to do and what not
● Once agreed on the tags' names, never change

them! Nor change the rank and the order of the
dimensions in arrays (neither for aesthetic reasons
nor alphabetic or whatever) -> lost of back-
compatibility.

● You can write data in the order you wish!

● If a mandatory data doesn't apply for an unpredicted
reason, better not to write it than to invent a new
convention for it. -> rely on the reading code escape
capability.

● You can add further data/tags, it does not
interfere with the others. But for every code being
able to use them, you need to make them agreed in
the standards.

.etsf-nc structure

Intro
● General Info (NetCDF global attributes):

– title, history

● Dimensions:
– number_of_atom_species, number_of_atoms

– number_of_symmetry_operations

– max_number_of_states, number_of_kpoints, max_number_of_coefficients

– number_of_spins, numbers_of_spinor_components, number_of_components

– number_of_grid_points_vector1, ...

Data: Crystallographic File
● Crystal Structure:

– primitive_vectors

– reduced_symmetry_matrices, reduced_symmetry_translations

– atom_species, atomic_numbers, atom_species_names, chemical_symbols

– reduced_atom_positions

– space_group

Data: Density File
or Potential File

● Density:
– density[number_of_components, number_of_grid_points_vector1, ...,

real_or_complex_density]

● Potentials:
– exchange_potential[number_of_components, number_of_grid_points_vector1, ...,

real_or_complex_potential]

– correlation_potential[...]

– exchange_correlation_potential[...]

Data: Electronic Structure
● Brillouin Zone:

– reduced_coordinates_of_kpoints[number_of_kpoints,number_of_reduced_dimensions]

– kpoints_weights[number_of_kpoints]

● Energies, Occupations:
– number_of_states[number_of_spins,number_of_kpoints]

● k_dependent (flag, attribute)

– eigenvalues[number_of_spins,number_of_kpoints,max_number_of_states]

– occupations[number_of_spins,number_of_kpoints,max_number_of_states]

● Wavefunctions:
– basis_set (= ”plane_waves” or ...)

– number_of_coefficients[number_of_kpoints]

– reduced_coordinates_of_plane_waves
[number_of_kpoints,max_number_of_coefficients,number_of_reduced_dimensions]

– coefficients_of_wavefunctions[...]

● Real Space Wavefunctions:
– real_space_wavefunctions[...]

Data: Optional
● Atomic Data:

– valence_charges, pseudopotential_types, number_of_electrons

● Brillouin Zone:
– kpoint_grid_shift, kpoint_grid_vectors, monkhorst_pack_folding

● Convergency:
– kinetic_energy_cutoff, smearing_width, smearing_scheme, fermi_energy

– exchange_functional, correlation_functional

Data: Electronic Structure
● GW/BSE/TDDFT data:

– gw_corrections[...]

– kb_formfactors[...]

Asked Questions and
Open Points

● Dielectric Function (Screening)?

.etsf-nc at present

● -etsf.nc f90 interface (VO & Matthieu
Verstraete) + Damien Caliste interface.

● kss2etsf conversion utility from ABINIT
_KSS format to .etsf-nc;

● DP (TDDFT) code used to test ETSF
NetCDF interface: it works fine!

● EXC (BSE) can also be released with a
NetCDF interface, but we would like to
solve the last point, the screening ->
agreement with the community.

.etsf-nc in future

● -etsf.nc: integration within ABINIT, DP,
EXC, STGW, SPHINGx (?), WANT.

● Converter NetCDF ETSF <-> IOTK
Espresso?

● What about VASP, Siesta, Espresso?

