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@ Calculating the band structures of solids
© GW goes wrong with CuO
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Calculating the band structures of solids
Density Functional Theory

Density Functional Theory (DFT) is the most used method for
electronic calculations in solids.

— Kohn-Sham equations introduce one-electron energies ¢;
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Can we use the energies ¢; as a band structure ?



Calculating the band structures of solids
Density Functional Theory

Density Functional Theory (DFT) is the most used method for
electronic calculations in solids.

— Kohn-Sham equations introduce one-electron energies ¢;
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Can we use the energies ¢; as a band structure ?

x No, for theoretical reasons
x No, for practical grounds



Calculating the band structures of solids
No! due to practical results

Band gaps of semiconductors
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Calculating the band structures of solids

Electronic excitations through Green's functions

Alternative framework: Green’s function
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Calculating the band structures of solids

Approximations for the self-energy

Systematic way to produce approximated X :
@ Feynman diagrams
@ Hedin's equations (1965).

Hartree-Fock Approximation GW Approximation




Calculating the band structures of solids
Yes! GW band gaps

Band gaps of semiconductors
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GW goes wrong with Cu,0

Cuprous oxide Cuy0: a simple solid?

Optical Absorption
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GW goes wrong with Cu,0

Cuprous oxide Cuy0: a simple solid?

Optical Absorption
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GW goes wrong with Cu,0

Cu,0 goes wrong]!
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GW goes wrong with Cu,0
Ingredients of the GW calculation

Since the mid-80's,
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GW goes wrong with Cu,0

Getting rid of LDA

Looking for a better starting point

GW

Y= iGW |— €




GW goes wrong with Cu,0

Getting rid of LDA

Looking for a better starting point

X=iGW

—>

Gw

o




Self-consistent GW for simple solids

Outline

© Self-consistent GW for simple solids



Self-consistent GW for simple solids

Quasiparticle self-consistent GW

based on Faleev, van Schilfgaarde and Kotani, PRL 93, 126406 (2004).
In principle,
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— orthogonal wavefunctions



Self-consistent GW for simple solids

LDA states as a basis set?
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Self-consistent GW for simple solids

LDA states as a basis set?
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LDA states as a basis set?
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Self-consistent GW for simple solids

LDA states as a basis set?
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Self-consistent GW for simple solids

Band width of a simple metal
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Self-consistent GW for simple solids

Band gap of a semiconductor
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Self-consistent GW for simple solids
Band gap of an insulator
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Self-consistent GW for simple solids
Density and wavefunctions
Electronic density
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Density and wavefunctions

Difference
between GW and LDA

Bulk silicon

!/




Self-consistent GW for simple solids
Density and wavefunctions
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Self-consistent GW for simple solids

Other materials
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Cuz0 needs self-consistent GW
GW density Cu,0

Difference of the density GW - LDA




Cuz0 needs self-consistent GW

Valence wavefunctions

s valence states

o/ —e
(111)direction " LDAW

o]
.,\“ Cu _,,o\.

N
(111)direction




Cuz0 needs self-consistent GW

Valence band structure
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Cuz0 needs self-consistent GW
Band gaps of Cu,O
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@ Self-consistent GW slightly underestimates



Cuz0 needs self-consistent GW

Optical absorption coefficient

Excitons through the Bethe-Salpeter equation with the

self-consistent GW eigenvalues and GWW screening
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Cuz0 needs self-consistent GW

Optical absorption coefficient

Excitons through the Bethe-Salpeter equation with the
self-consistent GW eigenvalues and GWW screening
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Conclusions

Summary
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Conclusions

Summary
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Conclusions

A new state-of-art?

@ Self-consistent GW is cumbersome.

@ Apply the self-consistent method to nasty cases
= Kohn-Sham DFT is qualitatively wrong.
e semiconductors predicted metallic within LDA: InAs, InSb
e junctions of semiconductors where the alignment of the bands
matters.
o finite systems where the LUMO is not correct in LDA: SiH,4
e complex oxides where LDA is really off.

abinit.org

@ scGW: available in



Extra
Effect of semicore on GW

Semicore: Cu 3s,3p
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Extra
Valence states of Cu,O
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Extra
Theory & Photoemission

Hartree-Fock Approximation GW Approximation

v W= 8'1v

hv hv
% E kin % /; .




Extra
No! due to a theoretical argument
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