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The Kohn Sham
Band-Gap Problem

The Kohn-Sham (KS) approach to DFT is powerful and successful because:

m KS equations are easy to solve
m Eyc is suitable for approximations

BUT...

(1) KS eigenvalues and eigenfunctions have no direct physical meaning
(2) KS energies cannot be interpreted as addition/removal energies

(3) Exact DFT gives the ionization potential, but approximated Vyc's give
poor results

Nevertheless they are used to study band structures!
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It turns out that:

helketplstian B KS yelds reasonable valence band dispersions but. ..

Band-Gap Problem

m KS sistematically underestimates the band gap value!

Energy gap (eV)
4

Direct and indirect LDA gaps
compared to exp. values.
. After W. G. Aulbur et al.

[ 2 6 8 1

~ LDA

« Expt. indirect gap
® Expt, direct gap

Better theoretically justified approaches are mandatory to study band gaps!

What about Many Body Theory?
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Green'’s Function

G(1,2) = —i(N[T D (1)), (2)IN)

Hedin's Equations

e no spin-flip, no spin-orbit coupling
W (r)wet(r
G””(rl,rz;w)zz 04( l) o ( 2) e
— w—Eg +idsign(EZ — u)

m Poles of G(w) are addition or removal

energies (QP energies, EZ) 2““:"3';
m No poles inside the energy gap R T >
m V7 are the quasiparticle amplitudes

satisfying the Dyson equation: Poles of G(w)

1 & &
— 3B o WE(r2) + [ 577 (14,1 EZ)WE(r) ch, = EZVE(r)

>79 is a non-Hermitian, nonlocal and energy dependent operator (Self-Energy)
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¥ can be obtained by solving a closed set of five integral equations involving:

. . . L én
i m The Green’s functions G m The irreducible polarizability ¥ = -
- tot
and the GW . . o .
Approximation m The screened interaction W = e~ *v m The vertex function I

Graphical representation of Hedin’s equations

m Challenging task!
“{., m Find an approximation that can be solved
m |dea: neglect vertex corrections

M =5(1,2)5(1,3)

m Approximated Self Energy:
¥ =iGW

X=—iGGT Hence GW Approximation!
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¥ can be obtained by solving a closed set of five integral equations involving:

. . . L én
i m The Green’s functions G m The irreducible polarizability ¥ = -
- tot
and the GW . . o .
Approximation m The screened interaction W = e~ *v m The vertex function I

The GW Approximation

m Simpler set of equations:
m Start from a good G, and iterate
m Different level of self-consistency:

(A) GoWo (only one cycle)
(B) GoW (update only W)
(C) GW, (update only G)
(D) GW (fully self-consistent)
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GW Self-Energy in w-space:

: .
Taw(r,raw) = — /e'wléG”(rlafz;w+w/)W(r1,f2;w') dw’

First Iteration (GoWo)
e G 77 is approximated by the independent particle GZ

Frequency and

ecprocal Space (the Green’s function of the non-interacting KS system)

5 (1) i) = LA
Gy 7(r,r2;w) = Z w—eg +idsign(eg — u)

e

with:

Hs g = g

Ingredients: KS wavefunctions and eigenvalues

N
| =‘
A\

A\




The GW Code
GW Self-Energy in w-space:

i .
Y 20(r,ra;w) = > /e'”/‘sG‘”(rl,rz;w—I—w’)W(rl,rz;w') dw’
7r

First Iteration (GoWo)

RaEL D W is approximated by the RPA expression:

Frequency and
Reciprocal Space

0
We,e,(0,w) = €515, Ve,(@), where &7 (d,w) = do,, — Ve, (A)X5 g, (0, )

and

[f(e‘k’_qbz)—f(egbl)] bzb1(q K, )szbl (a,k, o)

o o
W+ € _qp, ~ R, — |5S|gn(ek_q|[J2 — Ekbl)

) _1
XGng(q’w) - v kZ
by by

| ME(.K0) = (k= a,1,0le 1k c,0)

Ingredients: KS wavefunctions, eigenvalues and occupations numbers f
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Schematic representation of a RPA calculation

(1) FFT to evaluate M%°(q, k, o)
m Efficient

B Can use less PW's in |bik o)

(2) Evaluation of ngl)Gz(q, w) scales as
Ng - No - Ne - No - Nk

Implementation

® Time consuming (Nc ~ 102)
B Parallelized over k’s in the BZ

{k - q,p, 0]k c,0)

W Parallelized over N¢ (v5.3.0)

(3) Inversion of eRPA ,YSQG;':CW‘/'
B Done by a sigle CPU l
B Could be parallelized
Gele)

l

-1 4 .
€G1G3(\q7“’) ——




The GW Code

Oscillator matrix elements

MES(a,k,0) == (k —q, v,ole @8k ¢ o)

Matrix elements of X7

Implementation
o M2 (k, g, )ME (k
(bik ol gk o) = ~ 27 3~ 3~ M otk oWe (k0. 2)
R la +Gj

Matrix elements of X7 (w)

nbl nby
(@.k, 5)Mg (0., )
biko| £ (w)|boko) 2:2: iy
(b1ko |27 (w)Ib2ko) 41 G1lla + Gl G, (4w, 0)
6162
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Schematic representation of a ¥ calculation

(1) Only X matrix elements are
calculated
B Save memory and CPU -
B But it could be useful l i
Implementation
to have X and/or G! A
GI7 602
(2) 79 scalesas Ny, - Ng - Ng
3¢9 scales as (N, + Nc) - N2 - Ng i
B Parallelized over q in the BZ oo
) GW
B Parallelized over (N, + N¢)
(v5.3.0)
A,
bkol2g5 bka) [
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Parallelization works well, but we are still summing over the full BZ
Symmetries can be used to speed up the code...

m A symmetry operation S, consists of:

Symmetries:

SEIES, (1) a proper or improper rotation S

Speed Up the Code

(2) a fractional translation t

We adopt the convention: S p(r) = p(S7L(r))
S is an element of the little group Lq if Sq = q

IBZq is the irreducible wedge defined by Lq

m Ift=0 the symmetry operation is called symmorphic

Only symmorphic operations will be treated
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Symmetry properties:

If n is not degenerate If n belongs to the degenerate
subspace Cn
¢nsk(r) = 1/Jnk(s_1r) En

Ynsk(r) = > Dna(S) $ak(S7'r)

Symmetries:
a Useful Tool to

SrCEpiREE where Dnq(S) is the unitary
transformation associated with S

Using these properties in the definition of M£°(q, k), we obtain:

If Sq = g, v and c are not degenerate If Sqg = g and only v is degenerate

MEC (g, Sk) = M2® 5 (a, k)

ME*(a, Sk) = ZD a(S)IMgE15(a, k)
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mmetrization in ’((C?BGZ (9,w)

m The external wavevector q defines the irreducible wedge for the integration

Schematically:

1BZq

Symmeties: Xg)l)Gz (9,w) o Z Z Fe.6, = Z w (k) Z Fe.c,

a Useful Tool to
Speed Up the Code blbz b1b2

where:
w (k) are appropriate weights for each point in IBZq

'EGle is the symmetrized expression corresponding to Fg, g,

m The use of symmetries reduces the effort for high-symmetric g-points

m No need to take into account the transformation D,z (S)
(matrices D, 3(S) drop out of the final expression)




The GW Code

Symmetries:
a Useful Tool to
Speed Up the Code

RPA calculation for fcc Ni
(48 symmetry operations)

q Nk CPU Time
Sym/No Sym Sym/No Sym
— T 29/512 30m/9.6h
X 120/512 9m/31m
1, §, 3 | 288512 | 18m/31m
4 88

X(O) (arbitrary units)

Matrix Elements of X, (G=0)
X calculation with and without symmetries

°

°

T eeloseseaseelessatsscclemerieene’
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On a single processor a x calculation with
symmetries requires 8.5h instead of 15.2h

m Symmetrization decreases the CPU time but not the memory

m Why is g — I the most time consuming point?
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Correct evaluation of limg_,o xg)g(q,w) and limg_o xf)%)(q, w) requires:
Ve,6,(K) = (Vito, + Vikia,) (K + G1[Vnlk + Gy)

Three approaches according to inclvkb:

Symmettes: m 0 = do not include Vg, g, (k) CPU Time required by x(a=0) in a-Si0,
Speed Up the Code T
® 1 — use Legendre polymomials: th- L hour
20mr- 20m

inclvkb 1

(i) Vg, a, (k) cannot be factorized  »
i é lme inclvkb 2 dim
(i) CPU and memory oc Né z //
inclvkb 0
m 2 — use spherical harmonics: ss;///.’ék/afh

1000 2000 3000 4000
Number of G vectors for FFT

() Vo, 6,(k) = Vg, (k)Vg, (K)
(i) CPU and memory o< v - Ng
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Symmetrization in ©

m The external wavevector k defines the irreducible wedge for the integration

Schematically:

IBZ

(b1k o[ 77 |bik o) oc Z Z F—= Zw(q Z F

Symmetres: 6162 6162

a Useful Tool to

Speed Up the Code

BUT...

m If by is degenerate then Dy, (S) should be included in the equations
B A naive symmetrization causes removals of degeneracies

Solution:
Include all the degenerate states in the X calculation and average QP energies

But what about the off-diagonal elements of X?
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QP band structure calculation for Si
(24 symmetry operations)
QP Band Structure for Si

£ calculation with and without symmetries:

Q — Symmetries
Degenerate States » No Symmetriesi.

k Nq CPU Time
%’;Z‘,‘;‘“‘;}z‘ © Sym/No Sym Sym/No Sym
Speed Up the Code
r 19/256 8m/1.5h
X 60/256 | 21m/1.5h ’
131 ) o
2818 160/256 | 0.9h/1.5h | On a single processor a ¥ calculation in 9
k-points requires 4.5h instead of 14h

B Symmetrization decreases the CPU time, but not the memory allocated
m Small drawback: degenerate states must be included in the X calculation
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Future

Developments

Future Developments

(1) Inclusion of Umklapp processes: Sq =q + G

B further reduction of k- and g-points in the sums

(2) Treatment of non-symmorphic operations to:

B reduce memory
B improve the symmetrization
(3) Symmetries + Different levels of parallelization:

B k-points and spin
B bands and spin

(4) Better alghoritms to compute xg)l)ez(q,w)
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