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The Kohn-Sham (KS) approach to DFT is powerful and successful because:

KS equations are easy to solve

Exc is suitable for approximations

BUT. . .

(1) KS eigenvalues and eigenfunctions have no direct physical meaning

(2) KS energies cannot be interpreted as addition/removal energies

(3) Exact DFT gives the ionization potential, but approximated v̂xc ’s give
poor results

Nevertheless they are used to study band structures!
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It turns out that:

KS yelds reasonable valence band dispersions but. . .

KS sistematically underestimates the band gap value!

Direct and indirect LDA gaps
compared to exp. values.
After W. G. Aulbur et al.

Better theoretically justified approaches are mandatory to study band gaps!

What about Many Body Theory?
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Green’s Function

G(1, 2) := −i〈N|T̂ ψ̂H(1)ψ̂†
H

(2)|N〉

no spin-flip, no spin-orbit coupling

G σσ(r1, r2;ω) =
X

α

Ψσ
α(r1)Ψ

σ
α
†(r2)

ω − Eσ
α + iδsign(Eσ

α − µ)

Poles of G(ω) are addition or removal
energies (QP energies, Eσ

α )

No poles inside the energy gap

Ψσ
α are the quasiparticle amplitudes

satisfying the Dyson equation:

»

−
1

2
∆ + v̂H + v̂ext

–

Ψσ
α(r1) +

Z

Σσσ(r1, r2; Eσ
α)Ψσ

α(r2) dr2 = Eσ
αΨσ

α(r1)

Σσσ is a non-Hermitian, nonlocal and energy dependent operator (Self-Energy)

ωIm

Band Gap

δ
µ Re ω

Poles of G(ω)
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Σ can be obtained by solving a closed set of five integral equations involving:

The Green’s functions G

The screened interaction W = ǫ−1v

The irreducible polarizability χ̃ =
δn

δvtot

The vertex function Γ

Graphical representation of Hedin’s equations

Challenging task!

Find an approximation that can be solved

Idea: neglect vertex corrections

Γ = δ(1, 2)δ(1, 3)

Approximated Self Energy:

Σ = iGW

Hence GW Approximation!
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Σ can be obtained by solving a closed set of five integral equations involving:

The Green’s functions G

The screened interaction W = ǫ−1v

The irreducible polarizability χ̃ =
δn

δvtot

The vertex function Γ

The GW Approximation

Simpler set of equations:

Start from a good Go and iterate

Different level of self-consistency:

(A) GoWo (only one cycle)

(B) GoW (update only W )

(C) GWo (update only G)

(D) GW (fully self-consistent)
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GW Self-Energy in ω-space:

Σσσ
GW(r1, r2;ω) =

i

2π

Z

e iω′δG σσ(r1, r2;ω + ω′)W (r1, r2;ω
′) dω′

First Iteration (GoWo)

G σσ is approximated by the independent particle G σσ
o

(the Green’s function of the non-interacting KS system)

G σσ
o (r1, r2;ω) =

X

α

ψ σ
α (r1)ψ

σ
α

†(r2)

ω − ǫ σ
α + iδsign(ǫ σ

α − µ)

with:

Ĥ KS ψ
σ
α = ǫσαψ

σ
α.

Ingredients: KS wavefunctions and eigenvalues
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GW Self-Energy in ω-space:

Σσσ
GW(r1, r2;ω) =

i

2π

Z

e iω′δG σσ(r1, r2;ω + ω′)W (r1, r2;ω
′) dω′

First Iteration (GoWo)

W is approximated by the RPA expression:

WG1G2
(q, ω) = ǫ−1

G1G2
vG2

(q), where ǫRPA
G1G2

(q, ω) = δG1G2
− vG1

(q)χ
(0)
G1G2

(q, ω)

and

χ
(0)
G1G2

(q, ω) =
1

V

X

kσ
b1b2

h

f (ǫσk−qb2
) − f (ǫσkb1

)
i

Mb2b1
G1

(q, k, σ)Mb2b1
G2

†
(q, k, σ)

ω + ǫσk−qb2
− ǫσkb1

− iδsign(ǫσk−qb2
− ǫσkb1

)

Mνc
G (q, k, σ) := 〈k − q, ν, σ|e−i(q+G)·r|k, c, σ〉

Ingredients: KS wavefunctions, eigenvalues and occupations numbers f
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Schematic representation of a RPA calculation

(1) FFT to evaluate Mνc
G (q, k, σ)

Efficient

Can use less PW’s in |b1kσ〉

(2) Evaluation of χ(0)
G1G2

(q, ω) scales as

Nσ · Nν · Nc · Nω · Nk

Time consuming (Nc ∼ 102)
Parallelized over k’s in the BZ

Parallelized over Nc (v5.3.0)

(3) Inversion of ǫRPA

Done by a sigle CPU
Could be parallelized

KSS
FILE

DFT

FFT

SCR
FILE
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Oscillator matrix elements

Mνc
G (q, k, σ) := 〈k − q, ν, σ|e−i(q+G)·r|k, c, σ〉

Matrix elements of Σ σσ
x (From the static part of W )

〈b1kσ|Σ σσ
x |b2kσ〉 = −

4π

V

occ
X

ν

X

q G

Mνb1
G

†
(k,q, σ)Mνb2

G (k,q, σ)

|q + G|2

Matrix elements of Σ σσ
c (ω) (From the frequency dependent part of W )

〈b1kσ|Σ σσ
c (ω)|b2kσ〉 =

X

q
G1G2

X

n

Mnb1
G1

†
(q, k, σ)Mnb2

G2
(q, k, σ)

|q + G1||q + G2|
· Jn,k−q

G1G2
(q, ω, σ)
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Schematic representation of a Σ calculation

(1) Only Σ matrix elements are
calculated

Save memory and CPU
But it could be useful
to have Σ and/or G!

(2) Σ σσ
x scales as Nν · NG · Nq

Σ σσ
c scales as (Nν + Nc) · N2

G · Nq

Parallelized over q in the BZ

Parallelized over (Nν + Nc)
(v5.3.0)

KSS
FILE

SCR
FILE



The GW Code

Introduction
The Kohn Sham
Band-Gap Problem

Hedin’s Equations
and the GW
Approximation

GW
Implementation
Formalism in
Frequency and
Reciprocal Space

Implementation

Symmetries:
a Useful Tool to
Speed Up the Code

Future
Developments

Parallelization works well, but we are still summing over the full BZ

Symmetries can be used to speed up the code. . .

Definitions:

A symmetry operation Ŝt consists of:

(1) a proper or improper rotation S

(2) a fractional translation t

We adopt the convention: Ŝ ψ(r) := ψ(S−1(r))

S is an element of the little group Lq if Sq = q

IBZq is the irreducible wedge defined by Lq

If t =
−→
0 the symmetry operation is called symmorphic

Only symmorphic operations will be treated
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Symmetry properties:

If n is not degenerate

ψnSk(r) = ψnk(S
−1r)

If n belongs to the degenerate
subspace Cn

ψnSk(r) =

Cn
X

α

Dnα(S)ψαk(S
−1r)

where Dnα(S) is the unitary
transformation associated with S

Using these properties in the definition of Mνc
G (q, k), we obtain:

If Sq = q, ν and c are not degenerate

Mνc
G (q,Sk) = Mνc

S−1G(q, k)

If Sq = q and only ν is degenerate

Mνc
G (q,Sk) =

Cν
X

α

D†
να(S) Mαc

S−1G(q, k)
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Symmetrization in χ(0)
G1G2

(q, ω)

The external wavevector q defines the irreducible wedge for the integration

Schematically:

χ
(0)
G1G2

(q, ω) ∝
BZ

X

k

X

σ
b1b2

FG1G2
=⇒

IBZq
X

k

w(k)
X

σ
b1b2

F̃G1G2

where:

w(k) are appropriate weights for each point in IBZq

F̃G1G2
is the symmetrized expression corresponding to FG1G2

The use of symmetries reduces the effort for high-symmetric q-points

No need to take into account the transformation Dαβ(S)
(matrices Dαβ(S) drop out of the final expression)
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RPA calculation for fcc Ni
(48 symmetry operations)

q Nk CPU Time
Sym/No Sym Sym/No Sym

→ Γ 29/512 30m/9.6h

X 120/512 9m/31m

1

4
,

3

8
,

3

8
288/512 18m/31m

10 20 30 40 50 60

G index
0

0.2

0.4

0.6

0.8

1

χ(0
)  (

ar
bi

tr
ar

y 
 u

ni
ts

) with Symmetries
No Symmetries

Matrix Elements of χ
GG’

(q=0)
χ calculation with and without symmetries

χ(0)
GG

χ(0)
G0

On a single processor a χ calculation with
symmetries requires 8.5h instead of 15.2h

Symmetrization decreases the CPU time but not the memory

Why is q → Γ the most time consuming point?
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Correct evaluation of limq→0 χ
(0)
G0(q, ω) and limq→0 χ

(0)
00 (q, ω) requires:

VG1G2
(k) :=

`

∇k+G1
+ ∇k+G2

´

〈k + G1|V̂nl|k + G2〉

Three approaches according to inclvkb:

0 =⇒ do not include VG1G2
(k)

1 =⇒ use Legendre polymomials:

(i) VG1G2
(k) cannot be factorized

(ii) CPU and memory ∝ N2
G

2 =⇒ use spherical harmonics:

(i) VG1G2
(k) = ṼG1

(k)ṼG2
(k)

(ii) CPU and memory ∝ γ · NG

1000 2000 3000 4000 5000 6000
Number of G vectors for FFT

5 s

1 m

1h

20 m 

C
PU

 T
im

e

1 hour

20 m

1 m

5 s

CPU Time required by χ(q=0) in α-SiO
2

Mem ~1 Gb

inclvkb 1

inclvkb 2

inclvkb 0
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Symmetrization in Σ

The external wavevector k defines the irreducible wedge for the integration

Schematically:

〈b1kσ|Σ σσ|b1kσ〉 ∝
BZ

X

q

X

n
G1G2

F =⇒

IBZk
X

q

w(q)
X

n
G1G2

F̃

BUT. . .

If b1 is degenerate then Db1α(S) should be included in the equations

A naive symmetrization causes removals of degeneracies

Solution:

Include all the degenerate states in the Σ calculation and average QP energies

But what about the off-diagonal elements of Σ?
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QP band structure calculation for Si
(24 symmetry operations)

k Nq CPU Time
Sym/No Sym Sym/No Sym

Γ 19/256 8m/1.5h

X 60/256 21m/1.5h

1

2
,

3

8
,

1

16
160/256 0.9h/1.5h

Γ X

-5

0

5

10

ε 
[e

V
]

Symmetries
No Symmetries

QP Band Structure for Si
Σ calculation with and without symmetries

Degenerate States

On a single processor a Σ calculation in 9
k-points requires 4.5h instead of 14h

Symmetrization decreases the CPU time, but not the memory allocated

Small drawback: degenerate states must be included in the Σ calculation
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Future Developments

(1) Inclusion of Umklapp processes: Sq = q + G

further reduction of k- and q-points in the sums

(2) Treatment of non-symmorphic operations to:

reduce memory
improve the symmetrization

(3) Symmetries + Different levels of parallelization:

k-points and spin
bands and spin

(4) Better alghoritms to compute χ(0)
G1G2

(q, ω)
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