Electron-Phonon calculations with ABINIT The role of the Fermi Surface

M. Giantomassi

Université Catholique de Louvain Louvain-la-Neuve, Belgium

Liége 31 Jan 2007

Outline

- Superconductivity from First Principles
 - 1. Conventional superconductivity
 - 2. e-ph calculations with Abinit
- The Role of the Fermi Surface
 - 1. Fermi surfaces and nesting functions
 - 2. An application in electron-doped graphite
- Future Developments

Main Idea

Superconductivity results from a phonon mediated attraction between electrons

In brief:

- 1) Below the critical temperature T_c the normal metallic state is unstable
- 2) For T < T_c electrons are paired together to create a boson-like state (*Cooper pair*)
- 3) Only electrons close to the Fermi Surface (FS) can pair
- 4) A pair does not lose energy by interacting with the lattice

$$\mathbf{k}$$
- \mathbf{q} , \uparrow \mathbf{k} - \mathbf{q} , \downarrow \mathbf{k} , \downarrow \mathbf{k}

What do we need to study superconductivity from *first principles*?

The Code

All the <u>3*natom</u> perturbations must be calculated!

E-ph Formalism

From the e-ph matrix elements we can calculate:

1) Eliashberg function $\alpha^2 F(\omega)$

$$\alpha^2 F(\Omega) \propto \sum_{mn\mathbf{k}} \sum_{\nu\mathbf{q}} \frac{|M_{m\mathbf{k}+\mathbf{q},n\mathbf{k}}^{\nu}|^2}{\omega_{\mathbf{q}\nu}} \delta(\Omega - \omega_{\mathbf{q}\nu}) \, \delta(\epsilon_{n\mathbf{k}}) \, \delta(\epsilon_{m\mathbf{k}+\mathbf{q}})$$

2) Coupling costant λ

$$\lambda = 2 \int_0^\infty \frac{d\Omega}{\Omega} \, \alpha^2 F(\Omega)$$

3) McMillan expression for T

$$T_{\rm C} = \frac{\omega_{\rm log}}{1.20} \exp\left[-\frac{1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)}\right]$$

Free Parameter

where:
$$\omega_{\log} = \exp \left[\frac{2}{\lambda} \int_0^{+\infty} d\Omega \ \alpha^2 F(\Omega) \frac{\ln(\Omega)}{\Omega} \right]$$

Anaddb Output File

```
Q point = 5.000000E-01 5.000000E-01 5.000000E-01
Mode number
             Frequency (Ha) Linewidth (Ha) Lambda (q, n)
             -1.129601E-03 2.264127E-06
                                           6.001508E-02
             -1.129575E-03 2.264127E-06 6.001790E-02
              1.231081E-03 6.118777E-06 1.365531E-01
Superconductivity: isotropic evaluation of parameters from
electron-phonon coupling.
isotropic lambda = 4.703691E+00
omegalog
            = 1.762804E-04 (Ha)
                                     5.566487E+01 (Kelvin)
input mustar = 1.360000E-01
MacMillan Tc = 3.543208E-05 (Ha)
                                     1.118855E+01 (Kelvin)
```

The Role of the Fermi Surface

The shape of the FS affects $\alpha^2 F(\omega)$ through the double delta:

Interband and intraband nesting

$$\chi_{nm}(\mathbf{q}) = \sum_{\mathbf{k}} \delta(\epsilon_{n\mathbf{k}}) \, \delta(\epsilon_{m\mathbf{k}+\mathbf{q}})$$

Related input variables:

to plot the Fermi Surface: prtfsurf

to calculate and interpolate the nesting: prtnest

Fermi Surfaces with ABINIT

- Simple as using prtfsurf=1 in a SCF or NSCF calculation
- Output in the XcrysDen file format, but others are possible
- Not only bands at $\varepsilon_{_{\rm F}}$
- FS deformation due to a *frozen phonon*

Abinit intput file

Dense k-grids are a must but only the k-points in the IBZ are needed

Limitations:

- (1) Only Gamma centered k-meshes
- (2) Avoid non zero off diagonal terms if kptrlatt is used

■ FS + *frozen phonon* displacements...

and ab initio nice pictures!

Nesting Functions

- Useful to analize the FS geometry and identify important scattering processes
- Smearing and tetrahedron method
- Total nesting, intraband and interband contributions
- Evaluated on the coarse q-grid used for phonons
- Linear interpolation along an arbitrary q-path or on a 3D mesh

anaddb input file

$$\chi_{nm}(\mathbf{q}) = \sum_{\mathbf{k}} \delta(\epsilon_{n\mathbf{k}}) \, \delta(\epsilon_{m\mathbf{k}+\mathbf{q}})$$

Intraband and interband

$$\chi(\mathbf{q}) = \sum_{nm} \sum_{\mathbf{k}} \delta(\epsilon_{n\mathbf{k}}) \, \delta(\epsilon_{m\mathbf{k}+\mathbf{q}}) \qquad \underline{\text{Total nesting}}$$

Example: e-ph in Doped Graphite

FS with 2 sheets \Rightarrow 3 scattering processes:

- 1. π^* π^* intraband scattering (green)
- 2. interlayer-interlayer (blue)
- 3. π^* interlayer (red)

Three contributions to the total nesting:

$$\chi = \chi_{\pi^* - \pi^*} + \chi_{\pi^* - \text{in}} + \chi_{\text{in-in}}$$

Three contributions to the e-ph coupling:

$$\alpha^2 F = \alpha^2 F_{\pi^* - \pi^*} + \alpha^2 F_{\pi^* - \text{in}} + \alpha^2 F_{\text{in-in}}$$

$$\lambda = \lambda_{\pi^{\star} - \pi^{\star}} + \lambda_{\pi^{\star} - \text{in}} + \lambda_{\text{in-in}}$$

Wish List

- Symmetrization of the e-ph elements wrt perturbations:
 - 1) reduce CPU time required by LR
 - 2) reduce memory required by anaddb
 - 3) reduce size of GKK files
- Interpolation of e-ph matrix elements on a denser k-grid
 - 1) improve the converge of the integrals over the FS
 - 2) linear or Fourier interpolation?
- Decrease the memory allocated
- Interface with other FS-viewer (not only XcrysDen)

THANK YOU FOR YOUR ATTENTION

E-ph matrix elements

$$M_{m\mathbf{k}+\mathbf{q},n\mathbf{k}}^{\nu} = \langle \Psi_{m\mathbf{k}+\mathbf{q}} | \delta V_{eff}^{\nu\mathbf{q}}(\mathbf{r}) | \Psi_{n\mathbf{k}} \rangle$$
 Scattering of an electron due to a phonon (\mathbf{q}, \mathbf{v})

RECIPE

IR calculation for the elemental perturbations $(\mathbf{q}, \mathbf{j}, \alpha)$

- Save matrix elements of $\delta V^{q,j,\alpha}$ in the GKK file (only for **k**'s and **q**'s in the irreducible wedge)
- Run anaddb to:
 - a) build e-ph elements: $(\mathbf{q}, \mathbf{j}, \alpha) \Rightarrow (\mathbf{q}, \mathbf{v})$
 - b) reconstruct elements in the full BZ

LIMITATION

All the **3*natom** elemental perturbations must be calculated!

atom

reduced direction