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Calculation of phonons

!

Knowledge of dynamical matrix : D_ B(q ; K, K')

Frozen phonon
/v p

\

Linear response
lDiagonalization for a fixed q

3pK eigenvalues —® the square of vibrational frequencies of th

3pK eigenvectors —» the polarization vectors of the mode s :

where

a, 3 = Cartesian directions
K, K' = atom numbers
p = space dimension

q = phonon wavevector within the first Bri



E (resp. E') : energy of incident (resp. scattered) neutrons

k (resp. k') : wavevector of incident (resp. scattered) neutrons
Im> (resp. Im'>) : initial (resp. final) state of the sample

li> = [k>Im> : initial state of the neutron-sample system

[f> = Ik'>Im"> : final state of the neutron-sample system

Momentum conservation: AK=#A(k- k")
Energy conservation: Aw=E —E =E-E

In a INS experiment, we measure the number of scattered neutrons (dN), b
the solid angle (dQ), and with an energy included between E' and dE'.

This number, dN, is proportional to the differential scattering cross

ro __ ol
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where @1s the incident flux of neutrons



N b
Using a hard-core potential for neutron-nucleus, U (r)=2mhk Z —L5(r— rj), and the Fermi's
j=1 mj

21T
golden rule, W =— [(k'm'|Ukm)’ & (h w+E —E ), the differential scattering cross

section 1s given by:

d2 ’ N iKr —iKr
7__k ZF ¢ <b b e s gy
dQdE' k 2mh 5" i

In a crystal, the instantaneous position of the K-nucleous

belonging to the 1-cell is :

rj=r(l,K)=r0(l,K)+u(l,K) —» j=(, K

Thus, the differential scattering cross section is :

d2 ' 1 = 7 | (0 iKu(l, k;
o :k ZU,-,,,C(K)e 2WK(K)J"J: o0 < giKullst
dQdE' k 21H 1 7

where o (k)=b*—b2  andiuiae

inc



After developing in series the exponential and using the Fourier transform of the
displacement-displacement autocorrelation function,

2"h[”(w)+1]ze (k5. q)e (ks sia)e At 1
& y» Dy B y» Dy

\/meK, s, q 2w (q)

[6(w—w (g))=6(w+w (q))].
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we have the famous equation of inelastic neutron scattering :

d2 ’ O-inc(K) 7
T =K nw)+ 11T = 3 K e(xss, q)f e P[5
dQdJE' &k . 2w (q)

K s

where n(w) is the Bose factor



a=7.734 A
b=5.729 A
c=8933 A
B =106.72°
7 =2

32 atoms

Intensity (arb. units)

Monoclinic unit cell (P21/c) :
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I :intensity of incident radiation

I :intensity of transmitted radiation

I, I .
- x : width of sample
n : refraction index of the sample
W : frequency of the radiation
sample
[T -
Beer-Lambert law : —=e¢ where pH=—J3KX
1 nc
0
, X 1s the dielectric susceptibility of sample
with

c 1s the speed of light



Hamiltonian of system: H=H +H'  with H In>=En> and H=-M.E

where M is the dipolar moment, and E is the electric field

Under the electric field, the system is not at the equilibrium and a polarization, P, appear

(P (1))=Tr(pP,) er X, VE, (e a,B=x,y

where the density operator, p, obeys at the evolution equation :
9,
ih=C=[H, p]
ot
After some developments, we have :
X_(T)=——L(M,(r), M
% e, VT

where 0 is the Heaviside function and T =t -



Using the dipolar moment is given by : M = Z Z:B(K)MBU',K),
B. 1" k

where Z'(K) is the Born effective charge tensor and u(l’,K) is the displacement of the K-atom

within the I'-cell, the dielectric susceptibility is :
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Taking the Fourier transform and using the fluctuation-dissipation theorem, we have :
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Finally, using the expression of the Fourier transform of the displaceme

autocorrelation function, the imaginary part of the dielectric susceptibi

where




We consider a system with a volume V and constituted of N subsystems

AZ XYZ : laboratory referential
z
Xxyz : subsystem referential
@ The dielectric polarization of the total system is given by :
X
1
v Y -Y P,==2 V' P=— ) W
j Vo Vo
where P, V/, and ¥’ are respectively the polari
X the volume and the susceptibility of the j-s

We suppose that the macroscopic electric field E is the same as the electric fields
each subsystem, and there is no electromagnetic interaction between each sub
(particles are not metallic and the particles are not too close each others).
we have :

1 &
X == >
o f V 7 xf
Now, we suppose that the subsystems are identical (V/ are e

rotation

— ® The j-index can be represented



The susceptibility of the different subsystems can be obtained as :

X!, /= Z Ro(y Xy S R’ ~ where R is the rotation matrix given by :

s cos¥ cosOcosp—sin¥sin@  cos¥ cosOsing+sin ¥ cosp cos‘I’co
RI=R™*9= —sin ¥ cos@cosgp—cos ¥sinf@ —sin ¥ cosOsin ¥ +cos ¥ cosp —smY’
—cos¢coso —sin ¢ sin 0

The susceptibility of the total system is :

e T 2z (¥,0,8) y0 [ p(¥.0,6)\-1
=| "d¢ [, sinodo[ d¥[R x° (R



Monoclinic unit cell (P21/c)

a=6.085 A
b= 7.858 A
c=30.483 A
B=91.81°
7 =4

120 atoms

L/\/L Calculated

Wavenumber (cm'])

Intensity (arb. units)




We show that the differential cross section is proportional to :

d> o

dewd

o[ T(A(r, ) A(r, t+T)) e dT

After the electromagnetism rules, we have :

1 6" A(r,t oP(r,t
C ot ot

and the solutions are given by :
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Under the electric field, E i=E ? e
the medium given by : P(r,t)=€ X(r,t)E
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If we suppose that the polarizability is due to the fluctuation of susceptibility, we have :

X
SP(r,t)=e 6X(r,t)E. with 06X => | u,(k)

l Y ok aua(K)O

Then, using the annihilation-creation operators to express the displacement :

/ e (k,s e 7
(K, 1) Z 5 aelt—l—é( )a+elt]
Vm,

and using the averages : (a a’,)=6_(n +1) and (a’a_,)=6 ,n_ wheren is

we have the differential cross section :

iv = w} ~[n(w)+1]7 > vVl . (w)w
de(D 81T ¢ xByA Z

Wlth, 0<}’BA Z Cl )—
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The susceptibility X of the crystal can be decomposed into individual contributions, arising only

from the polarizability a of bond b between nearrest-neighbor atoms :

_1 b
chy_;§ O(O(y

and the polarizability of a particular bond b is given by the empiric equation :

|
b A
()(o(y(r)—3 (O(l+20(p)6(xy+(0(l (xp)

Now, we suppose that the BP parameters are functions of the bond lengths only, so t

1
Fr——=©6
Xy 3 xy

X, f3,Y are determined by fitting the experimental inte

M.V.



T-tensors are related to a mixed third-order derivative with respect to two electric fields and

one atomic displacement of the field-dependent energy functional, F=£-V E . P, where ZEis

the total energy in zero field and E (respectively P) are the macroscopic electric field

(respectively polarization) :

« 1 o' F
:° V OE,0E duy(k)

TT

These derivatives are obtained within a nonlinear response formalism, taking a
(2n +1) theorem
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s Abinit and anaddb compute independently all quantities required to ssmulate the INS, IR and
Raman responses ——» It could be interesting to do a subroutine with the equations for
the 3 spectroscopies to help spectroscopists in the understanding of their phonon spectra

s For Raman response : since the calculations of Te-tensors, viathe nonlinear response, -r//
avery important computing time for large systems, it could be interesting to implement :
bond polarizability model in anaddb



