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Overview

Computation of temperature-dependent quantities from Abinit

Renormalization of the eigenvalues
Lifetimes
Frequency-dependent self-energy
Spectral function
Beyond on-the-mass-shell approximation
Double grid technique

Features
NetCDF output
mpi4py

I > mpirun -n 64 python myscript.py
I parallelization over q-points
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Temperature renormalization and broadening of the
eigenvalues

Renormalized energies

εi(T) = ε
0
i +ℜΣii(εi,T)

Broadening
τ
−1
kn (T) = ℑΣii(εi,T)

Linearized solution

εi(T)≈ ε
0
i +ZiℜΣii(ε

0
i ,T)

With
Z−1

i = 1−ℜ
∂Σii(ω)

∂ω

∣∣∣
ε0

i

On-the-mass-shell approximation

εi(T)≈ ε
0
i +ℜΣii(ε

0
i ,T)
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Electron-phonon self-energy

= +Σep

Σ
ep
kn(T,ω) = Σ

Fan
kn (T,ω) + Σ

DW
kn (T)

Dynamical Fan term

Σ
Fan
kn (T,ω) =∑

qλ

∑
m
| 〈φkn|V(1)

qλ
|φk+qm〉 |2

×
[

nqλ (T)+ fk+qm(T)
ω− ε0

k+qm +ωqλ + iηkn
+

nqλ (T)+1− fk+qm(T)
ω− ε0

k+qm−ωqλ + iηkn

]
=∑

qλ

∑
m

Σ
Fan
kn,m,qλ

(T,ω)
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Electron-phonon self-energy

Static approximation

Σ
Stat.Fan
kn (T,ε0

kn) =∑
qλ

∑
m

| 〈φkn|V(1)
qλ
|φk+qm〉 |2

ε0
kn− ε0

k+qm + iηkn

[
2nqλ (T)+1

]
=∑

qλ

∑
m

Σ
Stat.Fan
kn,m,qλ

(T,ε0
kn)

For the bands above a certain cutoff M, we can use

∑
m>M

Σ
Stat.Fan
kn,m,qλ

(T,ε0
kn) = 〈φkn|V(1)

qλ
|φ (1)

kn,qλ
〉
[
2nqλ (T)+1

]
With the Sternheimer equation

(H− ε
0
kn)PM |φ (1)

kn,qλ
〉=−PMV(1)

qλ
|φkn〉
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Semi-static approximation

Σ
Fan
kn (T,ω) =∑

qλ

∑
m≤M

Σ
Fan
kn,m,qλ

(T,ω)+ ∑
m>M

Σ
Stat.Fan
kn,m,qλ

(T,ε0
kn)

=Σ
Fan Active
kn (T,ω)+Σ

Fan Sternheimer
kn (T)

Eliminates sum over bands
The frequency range of interest ω

is typically less than 0.2 eV away from ε0
kn.

By choosing a cutoff band M that lies more than 20 eV above ε0
kn,

the relative error on Σ is less than 1%.
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Calculation with Abinit

For each q-point...

kpts variables files quantities

mesh rfphon=1 DDB.nc Φ

set iscf=-2 EIG.nc ε0
kn

set iscf=-2 EIG.nc ε0
k+qm

nqpt=1

set ieig2rf=5 EIGR2D.nc 〈φkn|V(1)
qλ
|φ (1)

kn,qλ
〉

GKK.nc 〈φkn|V(1)
qλ
|φk+qm〉

set optdriver=7 GKK.nc

eph task=2
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Usage: renormalization and broadening

import ElectronPhononCoupling as epc

analyzer = epc.compute(

renormalization = True, # Compute the eigenvalues renormalization

broadening = True, # Compute broadening

temperature = True, # Compute at several temperatures

write = True, # Do write the results

rootname = ’output’, # Rootname for the output

smearing_eV = 0.01, # Imaginary broadening parameter

temp_range = [0, 1000, 250], # Temperatures (min, max, step)

nqpt = 3, # Number of q-points

wtq = [0.125, 0.5, 0.375], # Weights of the q-points.

eigk_fname = EIG_nc_at_k, # All the netcdf files

eigq_fnames = list_of_EIG_nc_at_kq, # produced by Abinit.

ddb_fnames = list_of_DDB_nc, #

eigr2d_fnames = list_of_EIGR2D_nc, #

gkk_fnames = list_of_GKK_nc, #

)
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Temperature-dependent renormalization/broadening

Direct band gap of diamond1
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1G. Antonius et al. (2014). Physical Review Letters 112.21, p. 215501
2S. Poncé et al. (2015). The Journal of Chemical Physics 143.10, p. 102813
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Spectral function

Dyson equation for the Green’s function

Gi(ω,T) = G0
i (ω)+G0

i (ω)Σii(ω,T)Gi(ω,T)

The spectral function is defined as

Akn(ω,T) =
1
π

ℑGkn(ω,T)

=
1
π

|ℑΣ
ep
kn(ω,T)|

[ω− ε0−ℜΣ
ep
kn(ω,T)]2 +ℑΣ

ep
kn(ω,T)2
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Usage: spectral function

import ElectronPhononCoupling as epc

analyzer = epc.compute(

self_energy = True, # Compute frequency-dependent self-energy

spectral_function = True, # Compute the spectral function as well

temperature = True, # Compute at several temperatures

smearing_eV = 0.01, # Imaginary broadening parameter

temp_range = [0, 1000, 250], # Temperatures (min, max, step)

nqpt = 3, # Number of q-points

wtq = [0.125, 0.5, 0.375], # Weights of the q-points.

eigk_fname = EIG_nc_at_k, # All the netcdf files

eigq_fnames = list_of_EIG_nc_at_kq, # produced by Abinit.

ddb_fnames = list_of_DDB_nc, #

eigr2d_fnames = list_of_EIGR2D_nc, #

gkk_fnames = list_of_GKK_nc, #

)
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Spectral function
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Important renormalization
factor: Z ≈ 0.6

Satellite band
Future work:
cumulant expansion

G. Antonius et al. (2015). Physical Review B 92.8, p. 085137
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Choosing the imaginary parameter η
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Depends on the q-point grid
η should be as small as
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Σ(ω) should remain smooth

G. Antonius et al. (2015). Physical Review B 92.8, p. 085137
13 / 20



Interpolation of the active space

We can use different q-point grids for the active space and the
Sternheimer contributions

Σkn(T,ω) =
fine

∑
qλ

Σ
Active
kn,qλ

(T,ω)+
coarse

∑
qλ

Σ
Sternheimer
kn,qλ

(T,ε0
kn)

We want to interpolate the dynamical matrices and the
electron-phonon coupling potentials onto a fine q-point grid.
Interatomic force constants:

Φκj,κ ′j′(Rl) = ∑
q

Φκj,κ ′j′(q)eiq·Rl

Interpolated dynamical matrix:

Φκj,κ ′j′(q̃) = ∑
l

Φκj,κ ′j′(Rl)e−iq̃·Rl
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Interpolation of the coupling potential

Fourier interpolation of the potential3

Wκj(r−Rl) = ∑
q

V(1)
qκj(r)e

iq·Rl

Represents the potential induced by the displacement of a single
atom along a Cartesian direction.
Allows to interpolate

V(1)
q̃κj(r)≈∑

l
Wκj(r−Rl)e−iq̃·Rl

Where the real-space summation is truncated.

Asier Eiguren and Claudia Ambrosch-Draxl (2008). Physical Review B 78.4,
p. 045124

15 / 20



Usage: double grid

import ElectronPhononCoupling as epc

analyzer = epc.compute(

renormalization = True, # Compute the eigenvalues renormalization

broadening = True, # Compute broadening

temperature = True, # Compute at several temperatures

double_grid = True, # Use double grid technique

smearing_eV = 0.01, # Imaginary broadening parameter

temp_range = [0, 1000, 250], # Temperatures (min, max, step)

# Q-points on the coarse grid

nqpt = 8,

wtq = list_of_weights_coarse,

# Q-points on the fine grid

nqpt_fine = 256,

wtq_fine = list_of_weights_fine,

# Files on the coarse grid

eigk_fname = EIG_nc_at_k,

eigq_fnames = list_of_EIG_nc_at_kq,

ddb_fnames = list_of_DDB_nc,

eigr2d_fnames = list_of_EIGR2D_nc,

gkk_fnames = list_of_GKK_nc,

# Files on the fine grid

eigq_fine_fnames = list_of_EIG_nc_at_kq_fine_grid,

ddb_fine_fnames = list_of_DDB_nc_kq_fine_grid,

gkk_fine_fnames = list_of_GKK_nc_kq_fine_grid,

)
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Tests on diamond
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Future work: polar materials

The long-ranged Fröhlich interaction needs to be treated separately.
We can model this interaction as

VFrolich
qκj (r) = ∑

G 6=−q

(q+G) ·Z∗
κj

(q+G) · ε∞ · (q+G)
ei(q+G)·r

Where Z∗
κj are the Born effective charges and ε∞ is the macroscopic

dielectric tensor.
This anlytic potential must be removed from the el-ph coupling
potential before interpolation, then added after.

S. Poncé et al. (2016). Computer Physics Communications 209, pp. 116–133
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Distribution

Maintained on github
https://github.com/GkAntonius/ElectronPhononCoupling

Distributed in abinit
∼abinit/scripts/post processing/ElectronPhononCoupling

Documentation
Extensive doc strings
Examples directory for users

I Abinit calculations
I EPC examples
I Plotting examples

Doc directory for developers
I How to add a test
I How to add an example

Test suite
nosetests
Comparison with reference
NetCDF data
Self-generation
of reference data
Files produced by Abinit
stored in the package
(< 5 Mb)
Not integrated the Abinit
test suite yet
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Anna Miglio
Yannick Gillet
Yang-Hao Chan
Matteo Giantomassi
Xavier Gonze

Thank you for your attention!

20 / 20


