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1. Theory of non-resonant Raman scattering
�Basics

Stokes mecanism : inelastic scattering of an
incident photon interacting with a phonon.

⇒ Frequency shift between the incident and
scattered light : ∆ω = ωm

We treat only non resonant scattering : Eγ < Egap

⇒ Relevant only for insulators

Measured intensity ≈ sum of lorentzian functions :

I(ω) ≈
active∑

m

Im
π

Cm

(ω − ωm)2 + C2
m

Only active phonon modes contribute :
They have a null wavector (q = 0)

They follow selection rules depending on
crystal symmetries and photon polarization
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1. Theory of non-resonant Raman scattering
�Measured intensity

I(ω) ≈
active∑

m

Im
π

Cm

(ω − ωm)2 + C2
m

Peak properties :

position : ωm phonon frequency
⇒ 2nd derivatives of the total energy E

intensity : Im
⇒ 3rd derivatives of the total energy E

width : Cm
⇒ 3rd and 4th derivatives of the total energy E

In green : available in ABINIT (and other codes !) for norm conserving
(NC) or projector augmented-wave (PAW) pseudo-potentials

In red : subject of the present work, implementation of new NC/PAW
routines in ABINIT
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1. Theory of non-resonant Raman scattering
�Raman intensity / Raman tensor

For a single crystal :

Im ∝
(ω0 − ωm)4

ωm
|eS.α

m.eI |
2

For polycrystals : mean
over all possible angles
between eI and eS.

ω0/ωm : light / phonon frequency

eI/eS : incident / scattered photon
polarization direction

αm : Raman tensor, depending on
crystal properties

Raman tensor :

αm
ij =

√
Ω0

∑
κ,β

dχij

dτκβ
um(κβ)

Ω0 : crystal volume

um(κβ) : eigendisplacement m of
atom κ along direction β
dχij

dτκβ
: derivative of the electric

susceptiblity with respect to the
displacement of atom κ along
direction β (at τκβ = 0)
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1. Theory of non-resonant Raman scattering
�Derivative of the electric susceptiblity

dχij

dτκβ
=

∂χij

∂τκβ
+
∑

k

∂χij

∂Ek

∂Ek

∂τκβ
χij (E) = χ

(1)
ij +

∑
k

χ
(2)
ijk Ek + O(E2)

For transverse optical modes (TO) :

αmTO
ij =

√
Ω0

∑
κ,β

∂χ
(1)
ij

∂τκβ
um(κβ)

For longitudinal optical modes (LO) :

αmLO
ij =

√
Ω0

∑
κ,β

(
∂χ

(1)
ij

∂τκβ
− 8π

Ω0

∑
k

χ
(2)
ijk

∑
l

ε−1
kl Z ∗κβ,l

)
um(κβ)

ε−1
ij : inverse of the dielectric tensor ( εij = 4πχ(1)

ij − 1 )

Z ∗κβ,l : Born effective charges tensor
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1. Theory of non-resonant Raman scattering
�Macroscopic properties from total energy derivatives

Notation :

X (λ1) ≡ dX
dλ1

∣∣∣∣
λ1=0

X (λ1λ2) ≡ d2X
dλ1dλ2

∣∣∣∣
λ1=λ2=0

. . .

Here we consider derivatives of the total energy E with respect to :

τκα : atomic displacement (q = 0)

Ei : uniform electric field

2nd derivatives :

E (τκατκ′β) = Cκα,κ′β ⇒ Dκα,κ′β(q = 0)⇒ {ωm,um(κ, β)}

E (EiEj ) = −Ω0χ
(1)
ij E (τκβEi ) = −Z ∗κβ,i

3rd derivatives :

E (τκβEiEj ) = −Ω0
∂χ

(1)
ij

∂τκβ
E (EiEjEk ) = −2Ω0χ

(2)
ijk
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2. Implementation of 3rd order DFPT in ABINIT
�Previous works / DFPT and PAW

In ABINIT, the PEAD (Perturbation Expansion After Discretization) for
3rd derivatives has been implemented by Veithen et al (2005).

Mixing of DFPT and Berry phase formalisms

Available only for NC pseudos, difficult to adapt to PAW

The advantages of PAW pseudopotentials are :

cutoff energy is reduced (as with ultra-soft pseudopotentials)

electronic properties around ionic cores are well described

precision similar to all-electron methods

one can use LDA+U formalism straightforwardly

⇒ To get rid of the Berry phase formalism, we need to compute third
derivatives of E in a “full DFPT” way (like in the work of Miwa, 2011).
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2. Implementation of 3rd order DFPT in ABINIT
�2n + 1 theorem with electric field perturbations

From the 2n + 1 theorem, to compute 3rd derivatives of the energy
requires only ground state wave functions |Ψ(0)

nk 〉 and its first
derivatives : |Ψ(τκβ)

nk 〉 |Ψ(Ei )
nk 〉

⇒ They are obtained solving 1st order Sternheimer equations.

However, the electric field perturbation brings a difficulty :

V (E) = E .r = E .“ i∇k ”

For 2nd derivatives of E, one also needs : |Ψ(ki )
nk 〉

and for 3rd derivatives : |Ψ(kiEj )
nk 〉 , |Ψ(ki kj )

nk 〉

⇒We need to solve two 2nd order Sternheimer equations !

Note : in PEAD, ∇k is discretized⇒ no need of |Ψ(kiEj )
nk 〉, |Ψ(ki kj )

nk 〉
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2. Implementation of 3rd order DFPT in ABINIT
�Work flow for computing third derivatives

Previous implementation using PEAD :

Dataset 1 : ground state
⇒ Ψ

(0)
nk , ε(0)

nk , n(0)(r) , . . .

Dataset 2 : 1st order Sternheimer (and 2de derivatives of E)
rfddk = 1, rfphon = 1, rfelfd = 1
⇒ Ψ

(ki )
nk , Ψ

(τκβ)
nk , Ψ

(Ei )
nk

Dataset 3 : 3rd derivatives of E
optdriver=5
d3e_pert1_phon=1, d3e_pert1_elfd=1
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2. Implementation of 3rd order DFPT in ABINIT
�Work flow for computing third derivatives

New "full DFPT" implementation :

Dataset 1 : ground state
⇒ Ψ

(0)
nk , ε(0)

nk , n(0)(r) , . . .

Dataset 2 : 1st order Sternheimer (and 2de derivatives of E)
rfddk = 1, rfphon = 1, rfelfd = 1
⇒ Ψ

(ki )
nk , Ψ

(τκβ)
nk , Ψ

(Ei )
nk

Dataset 3 : 2nd order Sternheimer
rf2_dkdk = 1
⇒ Ψ

(ki kj )
nk

Dataset 4 : 2nd order Sternheimer
rf2_dkde = 1
⇒ Ψ

(ki Ej )
nk

Dataset 5 : 3rd derivatives of E
optdriver=5, usepead=0 (default : 1)
d3e_pert1_phon=1, d3e_pert1_elfd=1
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2. Implementation of 3rd order DFPT in ABINIT
�The 1st and 2nd order Sternheimer equations

The Sternheimer equations have the form Ax = b where A† = A⇒ Solved with a conjugate gradient algorithm.

1st order :
(

Pc
)† (

H̃(0) − εnkS(0)
)

Pc |Ψ(λ1)

nk 〉 = −
(

Pc
)† (

H̃(λ1) − εnkS(λ1)
)
|Ψ(0)

nk 〉

2nd order :
(

Pc
)† (

H̃(0) − εnkS(0)
)

Pc |Ψ(λ1λ2)

nk 〉 = −
(

Pc
)† (

H̃(λ1λ2) − εnkS(λ1λ2)
)
|Ψ(0)

nk 〉

−
(

Pc
)† (

H̃(λ1) − εnkS(λ1)
)
|Ψ(λ2)

nk 〉 −
(

Pc
)† (

H̃(λ2) − εnkS(λ2)
)
|Ψ(λ1)

nk 〉

+
occ∑
m

Λ
(λ1)
mn

(
Pc
)† (

S(λ2)|Ψ(0)
mk〉 + S(0)|Ψ(λ2)

mk 〉
)

+
occ∑
m

Λ
(λ2)
mn

(
Pc
)† (

S(λ1)|Ψ(0)
mk〉 + S(0)|Ψ(λ1)

mk 〉
)

The Sternheimer equations (1st and 2nd orders) are solved in the same routine (respfn) :

call respfn
call dfpt_looppert
do ipert = 1,mpert ← “rf2_dkdk ” : ipert=natom+10 (ki kj ) , “rf2_dkde” : ipert=natom+11 (kiEj )
call dfpt_scfcv
do istep = 1, nstep ← for ipert=natom+10/+11 : nstep=1 ( as for natom+1 (ki ) )
call dfpt_vtorho
do isppol = 1, nsppol
do ikpt = 1, nkpt
call dfpt_vtowfk
if ( ipert==natom+10 or +11 ) call rf2_init ← Compute and store b for every bands
do iband=1,nband
call dfpt_cgwf ← Solve Ax = b for one band (if ipert/=natom+10/+11 : b is computed on the fly)
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2. Implementation of 3rd order DFPT in ABINIT
�Test of the 2nd order Sternheimer implementation

We compare our derivatives of wavefunctions to ones obtained with a
finite difference method on k (FDM,k) :

|∆Ψ
(ki )
nk 〉 ≡

|Ψ(0)
nk+∆ki

〉 − |Ψ(0)
nk−∆ki

〉
2∆k

⇒ gauge-dependent quantities : |∆Ψ
(ki )
nk 〉 is ill-defined.

Solution
To compare the derivative of density matrices instead.

X ≡ ρ(kiEj )
k (G,G′) |XDFPT − XFDM,k|/|XDFPT|

∆k (FDM parameter)
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2. Implementation of 3rd order DFPT in ABINIT
�Expression of third derivatives

Now we have to implement third order derivative of E , for both norm conserving and PAW pseudo potentials.

For two electric fields and one atomic displacement (λ1λ2λ3) = (τκβEiEj ) :

Ẽ(λ1λ2λ3) =
∑
k∈B

occ∑
n

(
〈Ψ(λ1)

nk |H
(λ2) − ε(0)

nk S(λ2)|Ψ(λ3)

nk 〉 + 〈Ψ(0)
nk |H

(λ1λ2)

KV
|Ψ(λ3)

nk 〉 + 〈Ψ(λ1)

nk |H
(λ2λ3)

KV
|Ψ(0)

nk 〉
)

−
∑
k∈B

occ∑
n,m

Λ
(λ1)

nmk

(
〈Ψ(λ2)

nk |S
(0)|Ψ(λ3)

mk 〉 + 〈Ψ(λ2)

nk |S
(λ3)|Ψ(0)

mk〉 + 〈Ψ(0)
nk |S

(λ2)|Ψ(λ3)

mk 〉
)

+
1

6

∫
dr E′′′

xc
[r, ñ(0)]ñ(λ1)(r)ñ(λ2)(r)ñ(λ3)(r)

+
1

6

∑
a

∫
Ωa

dr
(

E′′′
xc

[r, n(0)
a ]n

(λ1)
a (r)n

(λ2)
a (r)n

(λ3)
a (r)− E′′′

xc
[r, ñ(0)

a ]ñ
(λ1)
a (r)ñ

(λ2)
a (r)ñ

(λ3)
a (r)

)

+
1

2

∫
dr E′′

Hxc
[r, ñ(0)]ñ(λ1)(r)ñ

(λ2λ3)
(r)

+
1

2

∑
a

∫
Ωa

dr
(

E′′
Hxc

[r, n(0)
a ]n

(λ1)
a (r)n

(λ2λ3)

a (r)− E′′
Hxc

[r, ñ(0)
a ]ñ

(λ1)
a (r)ñ

(λ2λ3)

a (r)

)

There are a lot of terms to implement, but only few terms need new routines or modifications of existing ones.

E(λ1λ2λ3) = 1
6

(
Ẽ(λ1λ2λ3) + Ẽ(λ1λ3λ2) + Ẽ(λ2λ1λ3) + Ẽ(λ2λ3λ1) + Ẽ(λ3λ1λ2) + Ẽ(λ3λ2λ1)

)
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2. Implementation of 3rd order DFPT in ABINIT
�Structure of the nonlinear routine

Third order derivatives are computed in the nonlinear routine, created by Marek Veithen :

call nonlinear ← modified routine, now compatible with PAW

Read Ψ
(0)
nk , ε(0)

nk , n(0)(r) . . .

if (usepead == 1) then ← Forbidden for PAW pseudopotentials (checked in the inputs)
call pead_nl_loop ← old routine using PEAD formalism, remains untouched
. . .

else
call dfptnl_loop ← new routine, compatible with PAW

do ipert1 = 1,mpert ← loop on perturbations (only atomic displacement or electric field)

Read Ψ
(λ1)

nk , n(λ1)(r) . . .

do ipert3 = 1,mpert

Read Ψ
(λ3)

nk , n(λ3)(r) . . .

do ipert2 = 1,mpert

Read Ψ
(λ2)

nk , n(λ2)(r) . . .

if (ipert2 == natom + 2) ← test if λ2 is an electric field perturbation

Read Ψ
(kiλ3)

nk

call dfptnl_pert← Compute Ẽ(λ1λ2λ3) (in one call, there is no self-consistent loop)
. . .
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2. Implementation of 3rd order DFPT in ABINIT
�Comparison of 3rd derivatives of E

System : AlAs
Due to symmetries : only 1 degree of liberty in the tensors

χ
(2)
xyz

∂χ
(1)
xy

∂τAl,z

# of k-points # of k-points
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3. Conclusion

The implementation of the 2nd order Sternheimer equation
has been done and checked for NC and PAW
pseudopotentials.
The implementation of 3rd derivatives of E is operational
for NC pseudopotentials, but still under debugging for PAW
ones.
The “full DFPT” method converges faster than PEAD one
with respect to the number of k points.

⇒ It leads to a precise and efficient computation of the Raman
tensor.
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4. Appendix
�Density Matrices

For an insulator, the density matrix writes :

ρk =
occ∑

n
|Ψ(0)

nk 〉〈Ψ
(0)
nk |

ρk(G,G′) ≡ 〈k + G|ρk|k + G′〉 =
occ∑

n

(
c(0)

nkG

)∗
c(0)

nkG′

where c(0)
nkG are the coefficients of ground state Bloch waves :

|Ψ(0)
nk 〉 =

∑
G

c(0)
nkG|k + G〉

Derivatives of the density matrix write :

ρ
(λ1)

k =
occ∑

n

(
|Ψ(λ1)

nk 〉〈Ψ
(0)
nk | + |Ψ(0)

nk 〉〈Ψ
(λ1)

nk |
)

ρ
(λ1λ2)

k =
occ∑

n

(
|Ψ(λ1λ2)

nk 〉〈Ψ(0)
nk | + |Ψ(λ1)

nk 〉〈Ψ
(λ2)

nk | + |Ψ(λ2)

nk 〉〈Ψ
(λ1)

nk | + |Ψ(0)
nk 〉〈Ψ

(λ1λ2)

nk |
)

So :

ρ
(λ1λ2)

k (G,G′) =
occ∑

n

((
c

(λ1λ2)

nkG

)∗
c(0)

nkG′ +

(
c

(λ1)

nkG

)∗
c

(λ2)

nkG′ +

(
c

(λ2)

nkG

)∗
c

(λ1)

nkG′ +
(

c(0)
nkG

)∗
c

(λ1λ2)

nkG′

)
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4. Appendix
�Gauge invariance of the density matrix

We define :

|Φnk〉 =
∑
m

Unmk|Ψmk〉

where Unmk is a unitary matrix :

∑
m′

U∗nm′kUmm′k = δnm

For any operator A, one gets :

occ∑
n
〈Φnk|A|Φnk〉 =

occ∑
nmm′

U∗nmkUnm′k〈Ψmk|A|Ψm′k〉 =
occ∑

n
〈Ψnk|A|Ψnk〉

So for any observable A :

〈A〉Φ = 〈A〉Ψ

In a same way :

ρk =
occ∑

n
|Φnk〉〈Φnk| =

occ∑
nmm′

UnmkU∗nm′k|Ψmk〉〈Ψm′k| =
occ∑

n
|Ψnk〉〈Ψnk|
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