DE LA RECHERCHE À L'INDUSTRIE

Anharmonic effects in solids : an implementation in ABINIT

J. BOUCHET, F. BOTTIN, J. BIEDER

8TH ABINIT DEVELOPER'S WORKSHOP 9-12 MAY 2017

Cea

ACTINIDES : T ≠ 0 K ???

Temperature (°C)

- Comparison with experiments at room temperature.
- Low melting points.
- Dynamical instability of the bcc structure at 0 K.
- Elastic constants of uranium at low T.
- CDW in uranium
- Thermal conductivity of nuclear fuels
- Thermal dilation (uranium, plutonium)
- Softening of the bulk modulus of Pu
- Phase transitions (low symmetry vs high symmetry)

• ...

ATOMIC MOTIONS AND PHONON SPECTRA IN DFT

Density functional perturbation theory (DFPT) T= 0 K

Harmonic approximation : no thermal expansion, no phase transitions (melting) Quasi harmonic approximation : phonon frequencies are volume dependent

Structures dynamically stable at 0 K Weak anharmonicity

Bcc unstable at 0 K Low melting point, phase transitions

cea

HARMONIC-ANHARMONIC : AI VS Pu

URANIUM : FAILURE OF THE QHA

The uranium metal shows a charge density wave at zero pressure, directly relied upon the presence of a soft mode in the [100] direction. Thus, the structure is twofold in this direction at very low temperature.

Certa Uranium-Phonon spectrum with DFPT

0 0.2 0.4 0.6 0.8 1/0 5 10 15 h (r.l.u.) Pressure (GPa)

Cea

URANIUM : FAILURE OF THE QHA

This mode increases experimentally with temperature whereas with the QHA it decreases when the volume increases. \rightarrow Failure of the QHA.

A. Dewaele, J. Bouchet, F. Occelli, M. Hanfland, and G. Garbarino, Phys. Rev. B 88, 134202 (2013)

8th ABINIT Developer's WORKSHOP, 9-12 May 2017

THE INTERATOMIC FORCES CONSTANTS

Series expansion of the total energy wrt the atomic displacements:

$$H = U_0 + \sum_{i,\alpha} \left(\frac{\partial U}{\partial u_i^{\alpha}}\right)_0 u_i^{\alpha} + \sum_{ij,\alpha\beta} \frac{1}{2!} \left(\frac{\partial^2 U}{\partial u_i^{\alpha} u_j^{\beta}}\right)_0 u_i^{\alpha} u_j^{\beta} + \sum_{ijk,\alpha\beta\gamma} \frac{1}{3!} \left(\frac{\partial^3 U}{\partial u_i^{\alpha} u_j^{\beta} u_k^{\gamma}}\right)_0 u_i^{\alpha} u_j^{\beta} u_k^{\gamma} + 0(u^4)$$
Around equilibrium: $(\mathcal{F}_i^{\alpha})_0 = -\left(\frac{\partial U}{\partial u_i^{\alpha}}\right)_0 = 0$
The second order IFCs are defined by: $\Phi_{ij}^{\alpha\beta} = \left(\frac{\partial^2 U}{\partial u_i^{\alpha} u_j^{\beta}}\right)_0$

At the second order, the relation between total forces and atomic displacements becomes:

Then, we can compute the dynamical matrix :

$$\mathcal{F}_i^{\alpha} = -\sum_{j,\beta} \Phi_{ij}^{\alpha\beta} u_j^{\beta}$$

$$X: \sum_{\beta,j} D_{ij}^{\alpha\beta}(\mathbf{q}) X_j^\beta(\mathbf{q}) = M_i \omega^2(\mathbf{q}) X_i^\alpha(\mathbf{q})$$

And also the vDOS and Free Energy:

$$F(V,T) = U_0(V_0) + F_{vib}(V,T) \quad \text{avec}$$

$$F_{vib}(V,T) = \int_0^\infty g(\omega) \left[k_B T \ln\left(1 - \exp^{-\frac{\hbar\omega}{k_B T}}\right) + \frac{\hbar\omega}{2} \right] d\omega$$

O. Hellman et al., PRB 84, 180301(R) (2011), O. Hellman et al., PRB 87, 104111 (2013).

8th ABINIT Developer's WORKSHOP, 9-12 May 2017

QHA AND TDEP APPROXIMATIONS

The QHA gives good results except when the phonon spectrum depends **EXPLICITLY** on the temperature.

ω (0 K) W (0 K) Harm. Approx. Temperature effects Temperature offects Temperature offects Temperature offects

are only taken into account through the Bose-Einstein statistic. The phonon spectrum is constant.

V(x)

QHA Temperature effects are taken into account IMPLICITLY through the thermal expansion. The phonon spectrum is function of volume.

$\mathcal{F}_{i}^{\alpha}(t) = -\sum_{j,\beta} \Phi_{ij}^{\alpha\beta} u_{j}^{\beta}(t)$

8th ABINIT Developer's WORKSHOP, 9-12 May 2017

Static ab initio calculations

THE 2ND AND 3RD ORDER IFCS MATRICES

The number of coefficients in the 2nd and 3rd order IFCs matrices could be very huge. For 100 atoms, (3*100)² at the 2nd order and (3*100)³ at the 3rd order.

These number could be strongly reduced using symmetries; up to 10-20 at the 2nd order and around 100 at the 3rd order.

- 1. The IFCs are symmetric: $\Phi_{ij}^{\alpha\beta} = \Phi_{ji}^{\beta\alpha}$ $\Psi_{ijk}^{\alpha\beta\gamma} = \Psi_{jki}^{\beta\gamma\alpha} = \Psi_{kij}^{\gamma\alpha\beta} = \Psi_{ikj}^{\alpha\gamma\beta} = \Psi_{jik}^{\beta\alpha\gamma} = \Psi_{kji}^{\gamma\beta\alpha}$
- 2. The acoustic sum rule :

$$\sum_{j} \Phi_{ij}^{\alpha\beta} = 0 \quad \forall \ i \ \& \ (\alpha, \beta) \qquad \qquad \sum_{k} \Psi_{ijk}^{\alpha\beta\gamma} = 0 \quad \forall \ i, j \ \& \ (\alpha, \beta, \gamma)$$

3. The symmetries of the crystal (I) : from $ef(g) \rightarrow to ij(k)$

$$\Phi_{ij}^{\alpha\beta} = \sum_{\mu\nu} S_{ef \to ij}^{\alpha\mu} S_{ef \to ij}^{\beta\nu} \Phi_{ef}^{\mu\nu} \qquad \qquad \Psi_{ijk}^{\alpha\beta\gamma} = \sum_{\mu\nu\xi} S_{efg \to ijk}^{\alpha\mu} S_{efg \to ijk}^{\beta\nu} S_{efg \to ijk}^{\gamma\xi} \Psi_{efg}^{\mu\nu\xi}$$

4. The symmetries of the crystal (II) : if the interaction is kept invariant or reversed

Forces and displacements (MD, MC...)

IN THE ABINIT PACKAGE

Analysis of interatomic force constants column 1 is related to the displacement of the generic atom along x. column 2 is related to the displacement of the generic atom along y, 13 is related to the displacement of the generic atom along z, of the generic atom along y, column 3 is related to the displacement force constants. This is because prt ifc == 1. generic atom number 1 0.0000000E+00 Third atom defining local coordinates : ib = 1 irpt = 54 1 interaction with atom 1 cell 105 with coordinates 0.000000E+00 0.00000E+00 0.00000R+00 and distance 0.000000E+00 0.08028 0.00000 0.00000 0.00000 0.08028 0.00000 0.00000 0.00000 0.10244 Trace 0.26300 Transformation to local coordinates First local vector : 0.000000 0.000000 1,000000 Second local vector : -0.707107 -0.707107 0.000000 Third local vector : -0.707107 0.707107 0.000000 0.10244 0.00000 0.00000 0.00000 0.08028 0.00000 0.00000 0.00000 0.08028 2 interaction with atom 1 cell 56 with coordinates -2.667425E+00 -2.667425E+00 2.667425E+00 4.620116E+00 and distance -0.00756 -0.01320 0.01246 -0.01320 -0.00756 0.01246 0.01246 0.01246 -0.00112 -0.01625 Trace Transformation to local coordinates First local vector : -0.577350 -0.577350 0.577350 Second local vector : 0.408248 0.408248 0.816497 Third local vector : -0.707107 0.707107 0.000000 -0.03083 0.00339 0.00000 0.00339 0.00895 0.00000 0.00000 0.00000 0.00564

3 interaction with atom 1 cell 104 with coordinates 2.667425E+00 2.667425E+00 -2.667425E+00 and distance 4,620116E+00 -0.00756 -0.01320 0.01246 -0.01320 -0.00756 0.01246 0.01246 0.01246 -0.00112 Trace -0.01625 Transformation to local coordinates NOTE: Open file ifcinfo.out, for the output of interatom First local vector : 0.577350 0.577350 0.577350 0.577350 Second local vector : -0.408248 -0.408248 0.816497 with cartesian coordinates 0.00000000E+00 0.0000000E+0 Third local vector : -0.707107 0.707107 0.000000 -0.03083 0.00339 0.00000 0.00339 0.00895 0.00000 0.00000 0.00000 0.00564 4 interaction with atom 1 cell 54 with coordinates -2.667425E+00 -2.667425E+00 -3.853670E+00 and distance 5.392688E+00 -0.00756 -0.01320 -0.01246 -0.01320 -0.00756 -0.01246 -0.01246 -0.01246 -0.00112 Trace -0.01625 Transformation to local coordinates First local vector : -0.494637 -0.494637 0.714610 Second local vector : 0.505306 0.505306 0.699523 Third local vector : 0.707107 -0.707107 0.000000 -0.02835 0.01020 0.00000 0.01020 0.00647 0.00000 0.00000 0.00000 0.00564 5 interaction with atom 1 cell 106 with coordinates 2.667425E+00 2.667425E+00 3.853670E+00 and distance 5.392688E+00 -0.00756 -0.01320 -0.01246 -0.01320 -0.00756 -0.01246 -0.01246 -0.01246 -0.00112 Trace -0.01625 Transformation to local coordinates First local vector : 0.494637 0.494637 0 714610 Second local vector : -0.505306 -0.505306 0.699523 Third local vector : 0.707107 -0.7071070.000000 -0.02835 0.01020 0.00000 0.01020 0.00647 0.00000 0.00000 0.00000 0.00564

6 interaction with atom 1 cell 63 with coordinates -3.260548E+00 3.260548E+00 -3 2605488+00 5.647434E+00 and distance -0.00756 0.01320 -0.01246 0.01320 -0.00756 0.01246 -0.01246 0.01246 -0.00112 Trace -0.01625 Transformation to local coordinates First local vector : -0.5773500.577350 0.577350 Second local vector : 0.408248 -0.4082480.816497 Third local vector : -0.707107-0.7071070.000000 -0.03083 0.00339 0.00000 0.00339 0.00895 0.00000 0.00000 0.00000 0.00564 7 interaction with atom 1 cell with coordinates -3.260548E+00 3.260548E+00 3.260548E+00 and distance 5.647434E+00 -0.00756 0.01320 0.01246 0.01320 -0.00756 -0.01246 0.01246 -0.01246 -0.00112 Trace -0.01625 Transformation to local coordinates First local vector : -0.577350 0.577350 0.577350 Second local vector : 0.408248 -0.4082480.816497 Third local vector : 0.707107 0.707107 0.000000 -0.03083 0.00339 0.00000 0.00339 0.00895 0.00000 0.00000 0.00000 0.00564 8 interaction with atom 1 cell 05 with coordinates 3,260548E+00 -3,260548E+00 -3.260548E+00 and distance 5.647434E+00 -0.00756 0.01320 0.01246 0.01320 -0.00756 -0.01246 0.01246 -0.01246 -0.00112 Trace -0.01625 Transformation to local coordinates First local vector : 0 577350 -0.5773500.577350 Second local vector : -0.4082480.408248 0.816497 Third local vector : 0.707107 0.707107 0.000000 -0.03083 0.00339 0.00000 0.00339 0.00895 0.00000 0.00000 0.00000 0.00564

8th ABINIT Developer's WORKSHOP, 9-12 May 2017

Cea

URANIUM : AVERAGE POSITIONS AT 300 AND 50 K

No change in the [011] plane, the atoms stay in the ideal positions

At 50 K, the atoms adopt new equilibrium positions with a small displacement in the *x* direction

URANIUM : FAILURE OF THE QHA

URANIUM : PHASE DIAGRAM

URANIUM : PHASE DIAGRAM

PLUTONIUM: δ & ε PHASES STABILIZATION

« delta » phase

« epsilon » phase

Calculated transition temperature = 1000K (exp=750K)

B. Dorado, J. Bouchet & F. Bottin., Phys. Rev. B 95, 104303 (2017)

8th ABINIT Developer's WORKSHOP, 9-12 May 2017

IRON : ELASTIC CTS & SOUND VELOCITIES

Vibrational Density Of States

FIG. 3. (Color online) Room temperature phonon density of states of hcp Fe at different pressures. Straight lines : our work at 51 (black), 87 (red), 158 (blue), 245 (green) and 323 (orange) GPa. Open circles : NRIXS measurements^{31,34} at 51 (black), 85 (red) and 151 (blue) GPa.

Entropy and Specific Heat

FIG. 5. (Color online) Vibrational entropy (squares) and vibrational heat capacity (circles) as a function of density for hcp Fe on isotherms T=300 K (filled_symbols) and 1000 K

Very good agreement between simulations and experiments. The temperature effects are very well reproduced.

RIXS measurements of green, red and blue.

J. Bouchet & F. Bottin., in preparation

8th ABINIT Developer's WORKSHOP, 9-12 May 2017

CEA BEYOND THE 2ND ORDER

Beyond the 2nd order (in progress) :

Workshop CECAM : « Anharmonicity and thermal properties of materials » with O. Hellmann (CalTech) and M. Verstraete (Univ. Liège), January 2018