DE LA RECHERCHE À L'INDUSTRIE

Anharmonic effects in solids : an implementation in ABINIT

J. BOUCHET, F. BOTTIN, J. BIEDER

8TH ABINIT DEVELOPER'S WORKSHOP 9-12 MAY 2017 $\overline{1}$

ACTINIDES : T ≠ 0 K ???

Temperature (°C)

- \bullet Comparison with experiments at room temperature.
- •Low melting points.
- •Dynamical instability of the bcc structure at 0 K.
- •Elastic constants of uranium at low T.
- •CDW in uranium
- Thermal conductivity of nuclear fuels•
- Thermal dilation (uranium, plutonium)•
- •Softening of the bulk modulus of Pu
- Phase transitions (low symmetry vs high symmetry)•

•…

ATOMIC MOTIONS AND PHONON SPECTRA IN DFT

Density functional perturbation theory (DFPT) $T= 0$ K

 Harmonic approximation : no thermal expansion, no phase transitions (melting)Quasi harmonic approximation : phonon frequencies are **volume** dependent

$$
F(V,T) = E(V) + F_{ph}(\omega,T) + F_e(T)
$$

$$
F_{ph}(V,T) = k_B T \sum_{q,j} \ln \left\{ 2 \sinh \left(\frac{\hbar \omega_j(q)}{2 k_B T} \right) \right\}
$$

Structures dynamically stable at 0 KWeak anharmonicity

Bcc unstable at 0 KLow melting point, phase transitions

cea

HARMONIC-ANHARMONIC : Al VS Pu

URANIUM : FAILURE OF THE QHA

The uranium metal shows a charge density wave at zero pressure, directly relied upon the presence of a soft mode in the [100] direction. Thus, the structure is twofold in this direction at very low temperature.

Uranium-Phonon spectrum with DFPT

 0.2 0.4 0.6 0.8 1/0 5 10 $h(r.l.u.)$ Pressure (GPa)

20

URANIUM : FAILURE OF THE QHA

A. Dewaele, J. Bouchet, F. Occelli, M. Hanfland, and G. Garbarino, Phys. Rev. B **⁸⁸**, 134202 (2013)

THE INTERATOMIC FORCES CONSTANTS

Series expansion of the total energy wrt the atomic displacements:

$$
H = U_0 + \sum_{i,\alpha} \left(\frac{\partial U}{\partial u_i^{\alpha}}\right)_0 u_i^{\alpha} + \sum_{ij,\alpha\beta} \frac{1}{2!} \left(\frac{\partial^2 U}{\partial u_i^{\alpha} u_j^{\beta}}\right)_0 u_i^{\alpha} u_j^{\beta} + \sum_{ijk,\alpha\beta\gamma} \frac{1}{3!} \left(\frac{\partial^3 U}{\partial u_i^{\alpha} u_j^{\beta} u_k^{\gamma}}\right)_0 u_i^{\alpha} u_j^{\beta} u_k^{\gamma} + 0(u^4)
$$

Around equilibrium:
$$
\left(\mathcal{F}_i^{\alpha}\right)_0 = -\left(\frac{\partial U}{\partial u_i^{\alpha}}\right)_0 = 0
$$

The second order IFCs are defined by:
$$
\Phi^{\alpha\beta} = \left(\frac{\partial^2 U}{\partial u_i^{\alpha}}\right)_0
$$

The second order IFCs are defined by:

 $\left(\partial u_i^{\alpha} u_j^{\beta}\right)_{\alpha}$

At the second order, the relation between total forces and atomic displacements becomes:

Then, we can compute the dynamical matrix

$$
\mathcal{F}^{\alpha}_i = -\sum_{j,\beta} \Phi^{\alpha\beta}_{ij} u^{\beta}_j
$$

$$
\therefore \sum_{\beta,j} D_{ij}^{\alpha\beta}(\mathbf{q}) X_j^{\beta}(\mathbf{q}) = M_i \omega^2(\mathbf{q}) X_i^{\alpha}(\mathbf{q})
$$

And also the vDOS and Free Energy:

$$
F(V,T) = U_0(V_0) + F_{vib}(V,T) \text{ avec}
$$

\n
$$
F_{vib}(V,T) = \int_0^\infty g(\omega) \left[k_B T \ln \left(1 - \exp^{-\frac{\hbar \omega}{k_B T}} \right) + \frac{\hbar \omega}{2} \right] d\omega
$$

O. Hellman *et al.,* PRB 84, 180301(R) (2011), O. Hellman *et al.,* PRB 87, 104111 (2013).

QHA AND TDEP APPROXIMATIONS

Static ab initio calculations

 $\mathcal{F}_{i}^{\alpha}(t)=-\sum \Phi_{ij}^{\alpha\beta}u_{j}^{\beta}(t)$

 $V(x)$

THE 2ND AND 3RD ORDER IFCS MATRICES

The number of coefficients in the 2nd and 3rd order IFCs matrices could be very huge. For 100 atoms, (3*100)² at the 2nd order and (3*100)³ at the 3rd order.

These number could be strongly reduced using symmetries; up to 10-20 at the 2nd order and around 100 at the 3rd order.

- 1. The IFCs are symmetric: $\Phi^{\alpha\beta}_{ij}=\Phi^{\beta\alpha}_{ji}$ $\Psi_{ijk}^{\alpha\beta\gamma} = \Psi_{jki}^{\beta\gamma\alpha} = \Psi_{kij}^{\gamma\alpha\beta} = \Psi_{ikj}^{\alpha\gamma\beta} = \Psi_{jik}^{\beta\alpha\gamma} = \Psi_{kji}^{\gamma\beta\alpha}$
- 2. The acoustic sum rule :

$$
\sum_{j} \Phi_{ij}^{\alpha\beta} = 0 \quad \forall \ i \& (\alpha, \beta) \qquad \qquad \sum_{k} \Psi_{ijk}^{\alpha\beta\gamma} = 0 \quad \forall \ i, j \& (\alpha, \beta, \gamma)
$$

3. The symmetries of the crystal (I) : from ef(g) \rightarrow to ij(k)

$$
\Phi_{ij}^{\alpha\beta}=\sum_{\mu\nu}S_{ef\to ij}^{\alpha\mu}S_{ef\to ij}^{\beta\nu}\Phi_{ef}^{\mu\nu}\hspace{2cm}\Psi_{ijk}^{\alpha\beta\gamma}=\sum_{\mu\nu\xi}S_{efg\to ijk}^{\alpha\mu}S_{efg\to ijk}^{\beta\nu}S_{efg\to ijk}^{\gamma\xi}\Psi_{efg}^{\mu\nu\xi}
$$

4. The symmetries of the crystal (II) : if the interaction is kept invariant or reversed

Forces and displacements (MD, MC…)

IN THE ABINIT PACKAGE

Analysis of interatomic force constants of the generic atom along y, $-0.01320 - 0.00756 = 0.01246$
column 3 is related to the displacement
of the generic atom along z, $-0.01246 - 0.01246 = -0.00112$
 -0.01625
 -0.01625
 -0.001625 force constants. This is because prt_ifc -- 1. 0.00000000E-00 (make all of the position of t
Third atom defining local coordinates : $\begin{array}{cccc} 0.000000 & & & \\ 0.00339 & 0.00339 & 0.00000 & \\ 0.00339 & 0.00895 & 0.0$ $0.000000R + 00$ Trace 0.26300 Transformation to local coordinates 1.000000 o concon 0.000000 0.10244 0.00000 0.00000 0.00000 0.08028 0.00000 0.00000 0.00000 0.08028 2.667425E+00 and distance 4.620116E+00 Transformation to local coordinates First local vector: -0.577350 -0.577350 0.577350 Second local vector : 0.408248 0.408248 0.816497 Third local vector: -0.707107 0.707107 0.000000 -0.03083 0.00339 0.00000 0.00339 0.00895 0.00000 0.00000 0.00000 0.00564

3 interaction with atom 1 cell 104 with coordinates $2.6674258+00$ $2.6674258+00$ -2 6674258+00 1. 1. 1. Around 1. Aro Transformation to local coordinates NOTE: Open file ifcinfo.out, for the output of interatom First local vector: 0.577350 0.577350 0.577350 2. Built in the same manner of the same manner of the same manner of the same manner of the other constants. This is
2. Build in the other codes and post-process and post-process of the other codes and post-process of the 0.00000 0.00000 0.00564 3. Interaction with atom in cell to the MPI-IOS of the MPI-ION and MPI-ION interaction with the MPI-ION of the MPI-ION of the MPI-ION of the MPI-ION of the Compatibilities (the MPI-ION)
1.0000000000000000000000000000000000 4 interaction with atom 1 cell 54 read a *.nc output file coming from a molecular dynamic trajectory). Trace -0.01625 Transformation to local coordinates 4. International texts: 0.000000 0.000000 Pirst local vector : -0.494637 -0.494637 First local vector : -0.577350
1.000000 0.408248 -0.707107 -0.707107 -0.707107 -0.00000 0.505306 0.505306 0.505306 0.816497 0.816497 0.4082 points generation of the control of
Public distributed but also but also but also but also but also control of the control of the control of the c
 -0.02835 0.01020 0.00000 0.01020 0.00647 0.00000 0.00000 0.00000 0.00564 5 interaction incelled to the state of the state of the state incelled to the state of the state incelled to the cordinates of the cordinates $-2.667425E+00$ $-2.667425E+00$ $-2.667425E+00$ with coordinates $-2.667425E+00$ 3.853670E+00 and distance 5.392688E+00 6. Output files : data.output f
- data.output files : data.out Transformation to local coordinates First local vector: 0.494637 0.494637 0.714610 Second local vector : - 0.505306 - 0.505306 0.699523 Third local vector: 0.707107 -0.707107 0.000000 -0.02835 0.01020 0.00000 0.01020 0.00647 0.00000 0.00000 0.00000 0.00564

6 interaction with atom 1 cell 63 with coordinates -3.260548E+00 3.260548E+00 -3.2605488400 -0.01246 0.01246 -0.00112 **Trans** 0.01625 Transformation to local coordinates First local vector: 0.577350 0.577350 0.577350 -0.408248 -0.707107 -0.03083 0.00339 0.00000 0.00339 0.00895 0.00000 0.00000 0.00000 0.00564 7 interaction with atom 1 cell Trace -0.01625 Transformation to local coordinates First local vector: -0.577350 0.577350 0.707107 -0.03083 0.00339 0.00000 0.00339 0.00895 0.00000 0.00000 0.00000 0.00564 8 interaction with atom 1 cell GE. with coordinates 3.260548E+00 -3.260548E+00 -3.260548E+00 and distance 5.647434E+00 -0.00756 0.01320 0.01246 Transformation to local coordinates First local vector: 0.577350 -0.577350 0.577350 Second local vector : -0.408248 0.408248 0.816497 Third local vector: 0.707107 0.707107 0.000000 -0.03083 0.00339 0.00000 0.00339 0.00895 0.00000 0.00000 0.00000 0.00564

URANIUM : AVERAGE POSITIONS AT 300 AND 50 K

behange in the μ_{ref} plane, the

At 50 K, the atoms adopt new equilibrium positions atoms stay in the ideal positions with a small displacement in the x direction

URANIUM : FAILURE OF THE QHA

J. Bouchet & F. Bottin*.*, Phys. Rev. B **92**, 174108 (2015)

URANIUM : PHASE DIAGRAM

URANIUM : PHASE DIAGRAM

PLUTONIUM: δ & ε PHASES STABILIZATION

« delta » phase

« epsilon » phase

Calculated transition temperature = 1000K (exp=750K)

B. Dorado, J. Bouchet & F. Bottin*.*, Phys. Rev. B **95**, 104303 (2017)

IRON : ELASTIC CTS & SOUND VELOCITIES

Vibrational Density Of States **Entropy and Specific Heat**

FIG. 3. (Color online) Room temperature phonon density of states of hcp Fe at different pressures. Straight lines : our work at 51 (black), 87 (red), 158 (blue), 245 (green) and 323 (orange) GPa. Open circles : NRIXS measurements^{31,34} at 51 (black), 85 (red) and 151 (blue) GPa.

FIG. 5. (Color online) Vibrational entropy (squares) and vibrational heat capacity (circles) as a function of density for hcp Fe on isotherms $T=300$ K (filled symbols) and 1000 K

Very good agreement between simulations and experiments.The temperature effects are very well reproduced.

RIXS measurements of green, red and blue.

J. Bouchet & F. Bottin*.*, in preparation

BEYOND THE 2ND ORDER

Beyond the 2nd order (in progress) :

$$
\mathcal{F}_{i}^{\alpha}(t) = -\sum_{j,\beta} \Phi_{ij}^{\alpha\beta} u_{j}^{\beta}(t) - \frac{1}{2} \sum_{jk,\beta\gamma} \Psi_{ijk}^{\alpha\beta\gamma} u_{j}^{\beta}(t) u_{k}^{\gamma}(t) + 0(u^{3})
$$

Transport: the ionic thermal conductivity

$$
\kappa_{\alpha\alpha} = \frac{1}{V} \sum_{qs} C_{qs} v_{\alpha qs}^{2} \tau_{\alpha qs} \qquad \Gamma_{qs} = \sum_{s's''} \frac{\hbar \pi}{16} \iint_{BZ} \left| \Psi_{ss's''}^{qq'q''} \right|^{2} \Delta_{qq'q''} \times \frac{1}{\tau_{qs}} = \Gamma_{qs} \qquad \qquad \frac{\left[(n_{q's'} + n_{q''s''} + 1) \delta(\omega_{qs} - \omega_{q's'} - \omega_{q''s''}) \right.}{+ 2(n_{q's'} - n_{q''s''}) \delta(\omega_{qs} - \omega_{q's'} + \omega_{q''s''}) \right] dq' dq''}
$$

Equations of states : the Grüneisen parameters

$$
\gamma_{qs} = -\frac{V}{\omega_{qs}} \frac{\partial \omega_{qs}}{\partial V} = -\frac{1}{6\omega_{qs}^{2}} \sum_{ijk\alpha\beta\gamma} \frac{\epsilon_{is}^{qs*} \epsilon_{js}^{qs}}{\sqrt{M_i M_j}} r_{k}^{\gamma} \Psi_{ijk}^{\alpha\beta\gamma} e^{iqr_{j}}
$$

Workshop CECAM : « Anharmonicity and thermal properties of materials »with O. Hellmann (CalTech) and M. Verstraete (Univ. Liège), January 2018