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Band-gap problem with GW
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• G0W0@PBE→ underestimated Eg .
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• QSGW0@PBE → good Eg , but not
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• G0W0@PBE→ underestimated Eg .

• Quasiparticle self-consistent QSGW

→ too large Eg , underscreenedW .

• QSGW0@PBE → good Eg , but not
always.

• Vertex corections have to be included
inW to go beyond RPA

W = ε−1v

ε−1 = 1 + vχ
χ = χ0 + χ0 (v + fxc )χ
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A survey of fxc

• nanoquanta kernel a

fxc (34) = P−1
0 (36)G(65)G(5′6)W (55′)G(57)G(75′)P−1

0 (74)

as accurate as Bethe-Salpeter equation; but computationally formidable.

• Long-range contribution (LRC) kernelb

f LRCxc = −(a + bω2)/q2

surprisingly good for semiconductors; cheap; but empirical; not sufficient for insulators.

• Adiabatic local density approximation (ALDA) kernel

f ALDAxc =
∂VLDA

xc

∂ρ

ineffective for solids (missing long-range behavior).

aSee e.g., Reining et al. (2002), Sottile, Olevano, and Reining (2003), Adragna, Del Sole, and Marini (2003), Marini, Del Sole,
and Rubio (2003), and Bruneval et al. (2005).

bReining et al. 2002; Botti et al. 2005.
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Bootstrap approximated fxc

• (static) bootstrap kernel (Sharma, J. Dewhurst,
et al. 2011)

f boot
xc,GG′ (q, ω) =

ε−1
GG′ (q, 0)vG′ (q)

1 − εRPA00 (q, 0)

=
ε−1

GG′ (q, 0)vG′ (q)

χ00 (q, 0)vG′ (q)

X correct 1/q2 as q → 0
X small overhead to RPA
X no empirical parameters

• It works well for absorption spectra of semicon-
ductors.

only the G ¼ G0 ¼ 0 component is used in the denomina-
tor. The approximate functional in Eq. (2) is designed in
such a way that it satisfies two important requirements.
(a) fxc has the exact long-wavelength behavior [1,15]
fxcðq ! 0Þ ¼ #xc=q

2. Satisfaction of this condition en-
sures that the dielectric function "ðq ! 0; !Þ may have a
pole (i.e., a bound exciton) at some finite frequency, a
feature that neither RPA nor ALDA allows. This immedi-
ately follows from the exact representation " $
1! v$0=ð1! fxc$0Þ and from the fact that $0ðq ! 0Þ ¼
x0q

2. (b) In the ! ! 0 limit, the form of fxc should yield
static dielectric constants close to the RPA values, which
are known to reproduce experiments reasonably well.
Satisfaction of condition (b), for any functional
satisfying (a), is a highly nontrivial requirement because
RPA corresponds to fxc $ 0. To demonstrate that the
approximation (2) satisfies condition (b), we plug Eq. (2)
into Eq. (1) and solve for "!1ð! ¼ 0Þ, ignoring, for sim-
plicity, the matrix nature of $0, ", and fxc. The resulting

inverse dielectric constant "!1ð! ¼ 0Þ ¼ 1! v$0ð! ¼
0Þ=2!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½v$0ð! ¼ 0Þ(2=4! v$0ð! ¼ 0Þ

p
is plotted in

Fig. 1, and we find it is close to that obtained with the RPA.
We further note that, while Eq. (1) is exact, it is useful

only when either fxc or " is given; if neither are available,
then obviously it cannot be used as a generating equation
for both quantities. With the addition of the approximation
given by Eq. (2), however, both fxc and " can be deter-
mined from knowledge of $0 exclusively. The
modus operandi for doing so is to start by setting fxc ¼ 0
and then solving Eq. (1) to obtain "!1. This is then ‘‘boot-
strapped’’ in Eq. (2) to find a new fxc, and the procedure
repeated until self-consistency between the two equations
at ! ¼ 0 is achieved. This form of the kernel has two
major advantages: the computation cost is minimal, as
the most expensive part is the calculation of $0, which
needs to be calculated only once [16], and, most impor-
tantly, no system-dependent external parameter is required.

The $0 in Eqs. (1) and (2) are, in practice, calculated
using an approximate ground-state xc functional, such as the
LDA. To overcome the shortcomings of such an approxi-
mation, we further replace the $0 by a model response
function $m coming either from scissors-corrected LDA or
from GW or from LDAþU [17]. This has the advantage
that $m, and consequently $, has the correct gap to begin
with. From the formal point of view, this replacement
amounts to approximating the TDDFT kernel by

fapprxc ðq; !Þ ¼ 1

$0ðq; !Þ !
1

$mðq; !Þ þ fbootxc ðqÞ: (3)

Using the method outlined above, optical spectra for various
extended systems [18] were calculated using the full-
potential linearized augmented plane wave method [19],
implemented within the ELK code [20]. Except for the
case of solid Ar, a shifted k-point mesh of 15) 15) 15
is used to ensure convergence [21]. In the case of solid Ar, a
shifted mesh of 25) 25) 25 k points was required for
convergence of the optical spectrum. All the calculations
were performed by scissor shifting the ground-state Kohn-
Sham eigenvalues.
Presented in Fig. 2 are the results for some small (Ge*

0:67 eV) to medium (diamond *5:47 eV) band gap semi-
conductors. For comparison, experimental data, as well as
the RPA spectra, are also plotted. The experimental data
clearly show that all these materials have weakly bound
excitons, leading to a small shifting of the spectral weight
to lower energies, compared to RPA. The results from
TDDFT with the new kernel exactly follow this trend and
are in excellent overall agreement with the experiment.
For Ge, the TDDFT results are only slightly different

from the RPA values which themselves are in agreement
with experiment. It is clear that, for Ge, the RPA is enough
and fxc does not significantly improve on the result. This is
in complete contrast to the spectrum of Si, where the
spectral weight is redistributed and, corresponding to ex-
periment, the TDDFT results show an enhanced E1 peak.
The height of the E2 peak remains marginally overesti-
mated by TDDFT. This overestimation is not particular to
the present approximation for fxc; it is also a feature of the
BSE-derived kernel [11]. The dielectric function for GaAs
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FIG. 1 (color online). "!1 as a function of v$0.
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FIG. 2 (color online). Imaginary part of the dielectric tensor
("2) as a function [21] of photon energy (in eV). Experimental
data are taken from the following sources: Ge from [22], Si from
[23] and [22], GaAs from [24], diamond from [25], AlN from
[26], and SiC from [27].
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Bootstrap approximated fxc

• (static) bootstrap kernel (Sharma, J. Dewhurst,
et al. 2011)

f boot
xc,GG′ (q, ω) =

ε−1
GG′ (q, 0)vG′ (q)

1 − εRPA00 (q, 0)

=
ε−1

GG′ (q, 0)vG′ (q)

χ00 (q, 0)vG′ (q)

X correct 1/q2 as q → 0
X small overhead to RPA
X no empirical parameters

• It works well for absorption spectra of semicon-
ductors.

• Not so well for wide-gap insulators (Rigamonti
et al. 2015).

is also in very good agreement with the experiment—
subtle features like the kink at 4.25 eV are well-captured
by the bootstrap procedure.

The second column of Fig. 2 contains results for medium
band gap insulators. In all these materials, a significant
redistribution of the spectral weight to lower photon en-
ergies is observed. For diamond, the bootstrap procedure
correctly leads to an enhancement of the shoulder at low
photon energies. The position of the main peak around
12 eV is shifted to lower energies, and the whole spectrum
is in near-perfect agreement with the experiment. AlN is a
particularly interesting case—TDDFT shifts the spectral
weight to lower energies, and, although the height of the
peak is too large, the agreement with the experiment is
considerably better than that obtained by the equivalent
BSE calculation [28–30]. For SiC, the results show an
improvement over the RPA spectrum, but the height of
the main peak, as well as the shoulder at 9 eV, are over-
estimated. This trend is also observed in previous BSE
results [31].

A stringent test for any approximate xc kernel is in its
ability to treat materials with strongly bound excitons. In
these cases, a new resonant peak appears in the band gap
itself and represents the bound state of an electron-hole
pair. Perhaps the most studied test case for this phenome-
non is the ionic solid LiF. Other excitonic materials which
have also attracted attention and are considered particu-
larly difficult to treat are the noble gas solids. Plotted in the
first column of Fig. 3 are the results for three materials of
this class: LiF, solid Ar, and Ne. What is immediately clear
is that the bootstrap procedure, which gave only a slight
shift of spectral weight for Ge, now gives rise to an entirely

new bound excitonic peak inside the gap in all three cases.
The location of the peak, which corresponds to the exci-
tonic binding energy, is also very well-reproduced for all
these materials.
Despite a good overall agreement, we find that, for LiF,

the main peak at 12.5 eV is overestimated, and the peak
at 14.3 eV appears as a hump in the TDDFT results.
Nevertheless, it is encouraging to note that the BSE spec-
trum, as well that obtained using the BSE-derived kernel
[36], includes a spurious peak at around 21 eV which is
absent in the present calculations. Noble gas solids have
very weak band dispersion and polarizability, which results
in very strongly bound electron-hole pairs. In the case of
solid Ar, one can observe a strongly localized Frenkel
exciton [37] at about 12 eVand a Wannier exciton at about
14 eV. This physics is totally missing within the RPA.
Remarkably, though, the bootstrap procedure captures
both these excitons, although the Wannier exciton is sup-
pressed (see inset). Exactly like in BSE and LRC calcu-
lations [37], the Frenkel exciton is underbound by 0.7 eV.
Ne has a strongly bound Frenkel exciton, and the present
calculations capture the corresponding excitonic peak.
Similar to the BSE results [38], the height of this peak is
overestimated by the present TDDFT calculations.
The second column of Fig. 3 consists of some special

cases—NiO has an antiferromagnetic ground state, and the
LDAþU method is needed to obtain a physically reason-
able band structure for this material. This material provides
the bootstrap technique with a test of its validity for mag-
netic materials and also with a check of its performance
when the scissors-corrected LDA is replaced by LDAþU,
where U is chosen to reproduce the experimental gap. It is
clear from Fig. 3 that the bootstrap method leads once
again to the correct excitonic binding energy. The experi-
mental data for NiO are rather old and substantially broad-
ened [34], and, assuming the veracity of these data, both
TDDFT and BSE [39] overestimate the peak height. It is
worth noting that the BSE spectrum is redshifted relative to
the experiment and the TDDFT spectrum. Results for the
anatase phase of TiO2 are also presented in Fig. 3. This
material is important for its industrial use in photovoltaics
and has been well-characterized using the BSE and GW
method [40,41], as well as the experiment [35]. TiO2 is a
useful test for the bootstrap method due to its noncubic unit
cell, which leads to directional anisotropy in the optical
spectrum. As can be seen in Fig. 3, the bootstrap method
captures this anisotropy very well indeed. Even subtle
features, like the small shoulder at *4 eV in the out-of-
plane dielectric function, which is missing in the in-plane
case, are well-reproduced. We find that our peak heights,
like BSE results [40], are slightly overestimated.
It is also interesting to compare the real part of the

dielectric function with available experimental data.
Results for Si, GaAs, and diamond are presented in
Fig. 4. In all three cases, TDDFT results are in excellent
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FIG. 3 (color online). Imaginary part of the dielectric tensor
("2) as a function [21] of photon energy (in eV). Experimental
data are taken from the following sources: LiF from [32], Ar and
Ne from [33], NiO from [34], and TiO2 from [35]. In the inset, a
smaller broadening is used to better resolve the peaks [21].
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∗Note that LiF and Ar were not converged here.
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Implementation in ABINIT

ΣQSGW

G W (W̃)

εQP,ΨQP ε−1
RPA fxc

ε−1

QSGW

gwcalctyp 29

optdriver 3

gwgamma -4

src/70_gw/m_screening.F90

chi00_head = chi0(1,1,1)*vc_sqrt(1)**2

nstep=50 ! iteration steps

do istep=1,nstep

call atddft_symepsm1(io=1,...) !static

converged = (conv_err <= tol4)

if (converged) then

call atddft_symepsm1(...)

else if (istep < nstep) then

chi0_tmp = chi0(:,:,1)

vfxc_boot = chi0(:,:,1)/chi00_head

vfxc_boot = vc_sqrt*vc_sqrt*vfxc_boot

end if

end do
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Accuracy
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• Mean absolute error (eV)
QSGW+ fxc 0.13
QSGW 0.62
G0W0 0.45

• Highly accurate for a wide variety of
materials:
X sp semiconductor
X wide-gap insulator
X TM compound
X correlated oxide

WC and AP, PRB 92, 041115(R) (2015).
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Accuracy

• bootstrap vs nanoquanta

presenta nanoquantab Diff.
Si −0.17 −0.17 0.00
SiC −0.38 −0.35 0.03
C −0.50 −0.39 0.11
AlP −0.33 −0.33 0.00
Ge −0.14 −0.14 0.00
GaAs −0.25 −0.23 0.01
CdS −0.67 −0.48 0.19
BN −0.84 −0.55 0.29
MgO −0.99 −1.04 0.06

Band-gap renormalization (eV) due to vertex corrections.

aChen and Pasquarello 2015.
bShishkin, Marsman, and Kresse 2007.

• BSE-like accuracy at a marginal com-
putational cost.
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Kernel variants

• rpa-bootstrap (Rigamonti et al. 2015, later
Berger 2015)

fxc =
1

εRPAM χ̄RPA

χ̄RPA = χ0 + χ0v̄ χ̄RPA, v̄G=0 = 0

• Keeping only the G = 0, rpa-bootstrap is
essentially the one-shot version of the orig-
inal bootstrap kernel.

• Head-only bootstrap (no local fields)

fxc,00 =
1
2
*
,

2
χ0

00
− v0+

-

+
1
2

√√√
*
,

2
χ0

00
− v0+

-

2

−
4

(χ0
00)2

5 4 3 2 1 0
vχ0

1

2

3

4

5

6

ε M

RPA (fxc = 0)
Bootstrap
RPA Bootstrap

• εrpa
M = 1 − vχ0

• εrpa-boot
M = 2 − vχ0 = 1 + εrpa

M

• εboot
M inbetween
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Kernel variants

• rpa-bootstrap (Rigamonti et al. 2015, later
Berger 2015)

fxc =
1

εRPAM χ̄RPA

χ̄RPA = χ0 + χ0v̄ χ̄RPA, v̄G=0 = 0

• Keeping only the G = 0, rpa-bootstrap is
essentially the one-shot version of the orig-
inal bootstrap kernel.

• Head-only bootstrap (no local fields)

fxc,00 =
1
2
*
,

2
χ0

00
− v0+

-

+
1
2

√√√
*
,

2
χ0

00
− v0+

-

2

−
4

(χ0
00)2

Rigamonti: “Once the calculations are settled, the re-

sults of the BO are hence disappointing.” (Rigamonti

et al. 2015)

Sharma: “...these claims are overstated and that these

authors were unfortunately misled by focusing on only

three materials: Si, Ar, and LiF. ...the RBO kernel sig-

nificantly worsens the macroscopic dielectric constant.”

(Sharma, J. K. Dewhurst, et al. 2016)

Rigamonti: “The comment by S. Sharma and co-

workers does not contain benchmarks or criticism that

are pertinent to our work.” (Rigamonti et al. 2016)
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Showdown

Band gaps obtained with various bootstrap kernels

fxc fxc,0 f RPA
xc,0 Expt.+ZPR

AlP 2.73 2.82 2.75 2.47
C 5.94 6.00 5.86 5.85
CaS 4.83 5.00 4.80 4.43
CdS 2.66 2.87 2.73 2.48
CoO 2.78 3.47 3.30 2.5
InP 1.55 1.66 1.60 1.47
NiO 3.94 4.53 4.40 4.3
Si 1.30 1.34 1.31 1.22
SiC 2.45 2.48 2.43 2.40
SnO2 3.55 4.01 3.82 3.6
TiO2 3.74 3.94 3.84 3.3
ZnSe 2.95 3.25 3.11 2.87

fxc fxc,0 f RPA
xc,0 Expt.+ZPR

Ar - 14.00 13.29 14.30
BN 6.60 6.72 6.50 6.6
CaO 7.11 7.30 6.94 7.0
LiCl 9.70 9.99 9.57 9.4
LiF - 14.51 13.76 14.6
MgO 7.88 8.34 7.78 8.12
NaCl 8.84 9.14 8.55 8.5, 8.9
NaF - 12.17 11.26 11.5
Ne - 20.11 18.75 21.7

• The original kernel is most consistent.

• Local fields in fxc affect band gaps by 0.1-
0.4 eV.

• rpa-bootstrap strongly underestimates the
band gap for “ultra” wide-gap materials.
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Applications: Electronic structure of liquid water
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• Eg = 8.9 eV, vs experimentally determined 8.7 ± 0.6
eV (Bernas, Ferradini, and Jay-Gerin 1997).
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Applications: Nonempirical hybrid functionals

• global

vx = αΣx + (1 − α)vKSx

α = 1/ε∞

• range-separated

vx =
[
α + βerf(µr12)

]
Σx − βerf(µr12)vKSx

α = 1, β = ε−1
∞ − 1

ε−1 → 1 + (ε−1
∞ − 1) exp(−G2/4µ)

0 2 4 6 8 10
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RPA: β= − 0.67, µ= 0.81

fxc: β= − 0.65, µ= 0.85

RPA@PBE
fxc@HSE
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Applications: Nonempirical hybrid functionals

Eg (eV) ε∞
Hybrid Expt. Hybrid Expt.

AlAs 2.22 2.24 8.13 8.16
AlP 2.52 2.51 7.16 7.54
C 5.61 5.85 5.47 5.70
CdS 2.95 2.48 5.28 5.4
CdSe 1.89 1.84 7.07 6.2
Cu2O 2.49 2.12 6.36 6.46
GaAs 1.12 1.52 13.98 10.58
GaN 3.50 3.50 5.25 5.30
GaP 2.42 2.35 9.24 9.11
Ge 0.60 0.74 15.38 15.9
InP 1.55 1.42 9.81 9.61
Si 1.14 1.22 11.35 11.9
SiC 2.47 2.40 6.38 6.52
ZnO 3.54 3.4 4.15 3.74
ZnSe 2.68 2.72 6.33 5.9

Eg (eV) ε∞
Hybrid Expt. Hybrid Expt.

Al2O3 9.51 8.8 3.18 3.10
AlN 6.26 6.28 4.18 4.18
Ar 14.67 14.3 1.76 1.66
BN 6.56 6.6 4.39 4.50
CaO 7.17 7.0 3.37 3.33
LiCl 9.89 9.40 2.78 2.70
LiF 15.56 14.60 2.15 1.90
MgO 8.19 8.12 3.08 2.96
NaCl 9.10 8.9 2.38 2.40
Ne 22.51 21.7 1.41 1.23

(WIP)
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Conclusions

• QSGW with bootstrap vertex corrections is reliable for band-gap predictions.

• nanoquanta accuracy achieved at (nearly) no overhead w.r.t. RPA.

• “Ultra” wide band-gap insulator are still a challenge for bootstrap.

• Available in abinit v8.0+ (gwgamma).
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