Non-collinear magnetism in *Abinit* for Density Functional Perturbation Theory

Fabio Ricci¹, Marc Torrent², Matthieu J. Verstraete¹ and Eric Bousquet¹

¹QMAT - CESAM, Université de Liège, Belgium ²CEA - Bruyères-le-Châtel - Paris, France

8th Abinit Developers Workshop

Frejus, France 2017 May 9 - 12

Why DFPT?

Density Functional Perturbation Theory Why?

A general expression for the free energy

$$-g(\mathbf{E}, \mathbf{H}, \boldsymbol{\eta}) = -g_0 + P_i^{(s)} E_i + M_i^{(s)} H_i + \frac{1}{2} \varepsilon_0 \varepsilon_{ik} E_i E_k + \frac{1}{2} \mu_0 \mu_{ik} H_i H_k + \alpha_{ik} E_i H_k + \frac{1}{2} \beta_{ijk} E_i H_j H_k + \frac{1}{2} \gamma_{ijk} H_i E_j E_k + \dots$$

The derivatives at the *first* order

$$F_{k}(\mathbf{E}, \mathbf{H}, \boldsymbol{\eta}) = \frac{\partial g}{\partial \tau_{k}}; \quad P_{k}^{(s)}(\mathbf{E}, \mathbf{H}, \boldsymbol{\eta}) = \frac{\partial g}{\partial E_{k}}; \quad k, j = x, y, z$$
$$M_{k}^{(s)}(\mathbf{E}, \mathbf{H}, \boldsymbol{\eta}) = \frac{\partial g}{\partial H_{k}}; \quad \sigma_{k,j}(\mathbf{E}, \mathbf{H}, \boldsymbol{\eta}) = \frac{\partial g}{\partial \eta_{k,j}}$$

Why DFPT?

Density Functional Perturbation Theory Why?

A general expression for the free energy

$$-g(\mathbf{E}, \mathbf{H}, \boldsymbol{\eta}) = -g_0 + P_i^{(s)} E_i + M_i^{(s)} H_i + \frac{1}{2} \varepsilon_0 \varepsilon_{ik} E_i E_k + \frac{1}{2} \mu_0 \mu_{ik} H_i H_k + \alpha_{ik} E_i H_k + \frac{1}{2} \beta_{ijk} E_i H_j H_k + \frac{1}{2} \gamma_{ijk} H_i E_j E_k + \dots$$

The derivatives at the *second* order

$rac{\partial^2 g}{\partial o \partial \downarrow}$	τ	Е	η	н
au	IFC	Z^*	γ	Z_M^*
Е		ε^{∞}	е	α^{∞}
η			с	Me
н				Ҳм

IFC : Interatomic Force Constant Z^* : Born effective charge γ : int. strain coupling Z_M^* : Magnetic effective charge ε^{∞} : dielectric constant e: piezoelectric constant α^{∞} : magneto-electric t. Me: Magnetoelastic constant χ_M : Magnetic susceptibility

Accounting for Non-collinear Magnetic effects *Why?*

Accounting for Non-collinear Magnetic effects *Why?*

Density matrix $\hat{\rho}$

Non-Collinear magnetism: an undefined global quantisation axis of the magnetisation

Ground-State (0) density matrix in real space

$$\begin{aligned} \hat{\rho}^{(0)} &= |\psi^{(0)}\rangle \langle \psi^{(0)}| & \text{ in the spin representation } \\ \hat{\rho}^{(0)}_{\alpha,\beta} &= \langle \alpha | \psi^{(0)}\rangle \langle \psi^{(0)} | \beta \rangle & \text{ with } |\alpha\rangle, |\beta\rangle =\uparrow, \downarrow \\ \rho^{(0)} &= \begin{pmatrix} \psi^{(0)}_{\uparrow} \psi^{(0)*}_{\uparrow} & \psi^{(0)}_{\downarrow} \psi^{(0)*}_{\downarrow} \\ \psi^{(0)}_{\downarrow} \psi^{(0)*}_{\uparrow} & \psi^{(0)}_{\downarrow} \psi^{(0)*}_{\downarrow} \end{pmatrix} = \\ &= \frac{1}{2} \left[\rho \, \delta_{\alpha\beta} + \boldsymbol{m} \cdot \boldsymbol{\sigma}_{j} \right] = & \text{ with } j = x, y, z \\ &= \frac{1}{2} \begin{pmatrix} \rho + m_{z} & m_{x} - i \, m_{y} \\ m_{x} + i \, m_{y} & \rho - m_{z} \end{pmatrix}. \end{aligned}$$

Density matrix $\hat{\rho}$

Non-Collinear magnetism: an undefined global quantisation axis of the magnetisation

 1^{th} order λ perturbed density matrix in real space

$$\hat{\rho}^{(1)} = \frac{\partial}{\partial \lambda} \left(|\psi^{(0)}\rangle \langle \psi^{(0)}| \right) =$$
$$= |\psi^{(1)}\rangle \langle \psi^{(0)}| + |\psi^{(0)}\rangle \langle \psi^{(1)}|$$

in the spin representation

$$\begin{split} \hat{\rho}_{\alpha\beta}^{(1)} &= \langle \alpha | \psi^{(1)} \rangle \langle \psi^{(0)} | \beta \rangle + \langle \alpha | \psi^{(0)} \rangle \langle \psi^{(1)} | \beta \rangle \quad \text{with } | \alpha \rangle , | \beta \rangle =\uparrow, \downarrow \\ \rho^{(1)} &= \begin{pmatrix} \psi_{\uparrow}^{(1)*} \psi_{\uparrow}^{(0)} + \psi_{\uparrow}^{(0)*} \psi_{\uparrow}^{(1)} & \psi_{\uparrow}^{(1)} \psi_{\downarrow}^{(0)*} + \psi_{\uparrow}^{(0)} \psi_{\downarrow}^{(1)*} \\ \psi_{\downarrow}^{(1)} \psi_{\uparrow}^{(0)*} + \psi_{\downarrow}^{(0)} \psi_{\uparrow}^{(1)*} & \psi_{\downarrow}^{(1)*} \psi_{\downarrow}^{(0)} + \psi_{\downarrow}^{(0)*} \psi_{\downarrow}^{(1)} \end{pmatrix} = \\ &= \frac{1}{2} \left[\rho^{(1)} \delta_{\alpha\beta} + \boldsymbol{m}^{(1)} \cdot \boldsymbol{\sigma}_{j} \right] = \qquad \text{with } j = x, y, z \\ &= \frac{1}{2} \begin{pmatrix} \rho^{(1)} + m_{z}^{(1)} & m_{x}^{(1)} - i \, m_{y}^{(1)} \\ m_{x}^{(1)} + i \, m_{y}^{(1)} & \rho^{(1)} - m_{z}^{(1)} \end{pmatrix} . \end{split}$$

diag

Searching for a local magnetisation quantisation axis

How Abinit locally treats a ground state density in real space

Ground State quantisation axis direction

$$\sum_{\alpha\beta} U_{i\alpha}^{\dagger(0)} \ \rho_{\alpha\beta}^{(0)} \ U_{\beta j}^{(0)} = \rho_i^{(0)} \delta_{ij}$$

 $U^{(0)}$ is the spin-1/2 rotation matrix

$$n_{\uparrow,\downarrow}^{(0)} =
ho \pm m$$

 $m = \sqrt{m_x^2 + m_y^2 + m_z^2}$

Searching for a local magnetisation quantisation axis How Abinit locally treats a perturbed density in real space

1th order quantisation axis direction

$$\sum_{lphaeta} U^{\dagger}_{ilpha} \
ho_{lphaeta} \ U_{eta j} =
ho_i \delta_{ij}$$

$$\sum_{\alpha\beta} \left(U_{i\alpha}^{\dagger(0)} + \lambda U_{i\alpha}^{\dagger(1)} \right) \left(\rho_{\alpha\beta}^{(0)} + \lambda \rho_{\alpha\beta}^{(1)} \right) \left(U_{\beta j}^{(0)} + \lambda U_{\beta j}^{(1)} \right) = \left(\rho_i^{(0)} + \lambda \rho_i^{(1)} \right) \delta_{ij}$$

- unitarity of $U^{(0)}$
- unitarity of $\left(U^{(0)} + \lambda U^{(1)}\right)$
- analogous GS equation
- neglecting higher order terms

$$\begin{split} \sum_{\alpha} U_{i\alpha}^{\dagger(1)} U_{\alpha j}^{(0)} \left(\rho_{j}^{(0)} - \rho_{i}^{(0)} \right) + \sum_{\alpha \beta} U_{i\alpha}^{\dagger(0)} \rho_{\alpha \beta}^{(1)} U_{\beta j}^{(0)} = \rho_{i}^{(1)} \delta_{ij} \\ \left(\begin{array}{cc} 0 & \triangle \\ \triangle^{*} & 0 \end{array} \right) + \left(\begin{array}{cc} \vdots & -\triangle \\ -\triangle^{*} & \vdots \end{array} \right) = \left(\begin{array}{cc} \vdots & 0 \\ 0 & \vdots \end{array} \right) \end{split}$$

Searching for a local magnetisation quantisation axis

1th order quantisation axis direction

$$\sum_{lphaeta} U^{\dagger}_{ilpha} \
ho_{lphaeta} \ U_{eta j} =
ho_i \delta_{ij}$$

$$\sum_{\alpha\beta} \left(U_{i\alpha}^{\dagger(0)} + \lambda U_{i\alpha}^{\dagger(1)} \right) \left(\rho_{\alpha\beta}^{(0)} + \lambda \rho_{\alpha\beta}^{(1)} \right) \left(U_{\beta j}^{(0)} + \lambda U_{\beta j}^{(1)} \right) = \left(\rho_i^{(0)} + \lambda \rho_i^{(1)} \right) \delta_{ij}$$

- unitarity of $U^{(0)}$
- unitarity of $\left(U^{(0)} + \lambda U^{(1)}\right)$
- analogous GS equation
- neglecting higher order terms

$$\begin{split} \sum_{\alpha} U_{i\alpha}^{\dagger(1)} U_{\alpha j}^{(0)} \left(\rho_{j}^{(0)} - \rho_{i}^{(0)} \right) + \sum_{\alpha \beta} U_{i\alpha}^{\dagger(0)} \rho_{\alpha \beta}^{(1)} U_{\beta j}^{(0)} = \rho_{i}^{(1)} \delta_{ij} \\ \left(\begin{array}{c} 0 & \triangle \\ \triangle^{*} & 0 \end{array} \right) + \left(\begin{array}{c} \vdots & -\triangle \\ -\triangle^{*} & \vdots \end{array} \right) = \left(\begin{array}{c} \vdots & 0 \\ 0 & \vdots \end{array} \right) \end{split}$$

Estimation of the 1^{th} order xchange-correlation potential A(n) (*in*)complete transformation

Recovering the original direction on the local xc-potential

$$\left(\begin{array}{cc} 0 & \bigtriangleup \\ \bigtriangleup^* & 0 \end{array}\right) + \left(\begin{array}{cc} \vdots & -\bigtriangleup \\ -\bigtriangleup^* & \vdots \end{array}\right) = \left(\begin{array}{cc} \vdots & 0 \\ 0 & \vdots \end{array}\right)$$

$$V_{xc}^{\alpha\beta}\left(\rho_{\alpha\beta}^{(0)} + \lambda\rho_{\alpha\beta}^{(1)}\right) = \sum_{i} \left(U_{\alpha i}^{(0)} + \lambda U_{\alpha i}^{(1)}\right) \left(V_{i}^{(0)} + \lambda V_{i}^{(1)}\right) \left(U_{i\beta}^{\dagger(0)} + \lambda U_{i\beta}^{\dagger(1)}\right)$$
$$V_{xc}^{\alpha\beta(1)} = \sum_{i} \left[U_{\alpha i}^{(0)} V_{i}^{(0)} U_{i\beta}^{(1)\dagger} + U_{\alpha i}^{(1)} V_{i}^{(0)} U_{i\beta}^{(0)\dagger} + U_{\alpha i}^{(0)} V_{i}^{(1)} U_{i\beta}^{(0)\dagger}\right]$$

Estimation of the 1^{th} order xchange-correlation potential A(n) (*in*)complete transformation

Recovering the original direction on the local xc-potential

$$\left(\begin{array}{cc} 0 & \bigtriangleup \\ \bigtriangleup^* & 0 \end{array}\right) + \left(\begin{array}{cc} \vdots & -\bigtriangleup \\ -\bigtriangleup^* & \vdots \end{array}\right) = \left(\begin{array}{cc} \vdots & 0 \\ 0 & \vdots \end{array}\right)$$

$$\sum_{xc} \left(\rho_{\alpha\beta}^{(0)} + \lambda \rho_{\alpha\beta}^{(1)} \right) = \sum_{i} \left(U_{\alpha i}^{(0)} + \lambda U_{\alpha i}^{(1)} \right) \left(V_{i}^{(0)} + \lambda V_{i}^{(1)} \right) \left(U_{i\beta}^{\dagger(0)} + \lambda U_{i\beta}^{\dagger(1)} \right)$$
$$U_{\alpha\beta}^{\alpha\beta(1)} = \sum_{i} \left[U_{\alpha}^{(0)} U_{\alpha}^{(0)} U_{\alpha}^{(1)\dagger} + U_{\alpha}^{(1)} U_{\alpha}^{(0)} U_{\alpha}^{(0)\dagger} + U_{\alpha}^{(0)} U_{\alpha}^{(1)} \right]$$

$$V_{xc}^{\alpha\beta(1)} = \sum_{i} \left[U_{\alpha i}^{(0)} V_{i}^{(0)} U_{i\beta}^{(1)} + U_{\alpha i}^{(1)} V_{i}^{(0)} U_{i\beta}^{(0)} + U_{\alpha i}^{(0)} V_{i}^{(1)} U_{i\beta}^{(0)} \right]$$

As a first approximation we used just the last term

Ricci, Bousquet

Non-collinear magnetism in Abinit for DFPT

Application on Cr₂O₃

A collinear antiferromagnet as a test case for non-collinear DFPT

=

		FROZEN		TOTAL		
		FD	DFPT	FD	DFPT	
x, y, z	$\mathbf{m} \parallel z$	2320 1.036772	2320 4.0723534	7.71138685414	7.711369006	
	$\mathbf{m} \parallel x$	2320 1.036746	2320 4.0723507	7.71138847221	7.779709388	

Application on Cr₂O₃

A collinear antiferromagnet as a test case for non-collinear DFPT

		FROZEN		TOTAL		
		FD	DFPT	FD	DFPT	
x, y, z	$\mathbf{m} \parallel z$	2320 1.036772	2320 4.0723534	7.71138685414	7.711369006	
	$\mathbf{m} \parallel x$	2320 1.036746	2320 4.0723507	7.7 1138847221	7.779709388	
z, y, -x	$\mathbf{m} \parallel z$	2320 1.036772	2320 4.0723534	7.71138907248	7.711369548	
	$\mathbf{m} \parallel x$	23201.036746	2320 4.0723507	7.71139654588	7.929277730	

Application on Cr₂O₃

A collinear antiferromagnet as a test case for non-collinear DFPT

		FROZEN		TOTAL	
		FD	DFPT	FD	DFPT
x, y, z	$\mathbf{m} \parallel z$	2320 1.036772	2320 4.0723534	7.71138685414	7.711369006
	$\mathbf{m} \parallel x$	2320 1.036746	2320 4.0723507	7.7 1138847221	7.779709388
z, y, -x	$\mathbf{m} \parallel z$	2320 1.036772	2320 4.0723534	7.71138907248	7.711369548
	$\mathbf{m} \parallel x$	2320 1.036746	2320 4.0723507	7.71139654588	7.929277730

Correctly working for diagonal density matrices!

$$\left(\begin{array}{cc} 0 & \bigtriangleup \\ \bigtriangleup^* & 0 \end{array}\right) + \left(\begin{array}{cc} \vdots & -\bigtriangleup \\ -\bigtriangleup^* & \vdots \end{array}\right) = \left(\begin{array}{cc} \vdots & 0 \\ 0 & \vdots \end{array}\right)$$

The $U^{(0)}$ matrix gives an incomplete estimation of the off-diagonal elements

Estimation of the 1th order xchange-correlation potential *A complete tranformation*

We need $U^{(1)}$ to correctly obtain the $V_{xc}^{(1)}$ off-diagonal terms

Local density matrix diagonalisation:

$$\sum_{\alpha} U_{i\alpha}^{\dagger(1)} U_{\alpha j}^{(0)} \left(\rho_j^{(0)} - \rho_i^{(0)} \right) + \sum_{\alpha \beta} U_{i\alpha}^{\dagger(0)} \rho_{\alpha \beta}^{(1)} U_{\beta j}^{(0)} = \rho_i^{(1)} \delta_{ij}$$

Local non-collinear xc-potential:

$$V_{xc}^{\alpha\beta(1)} = \sum_{i} \left[U_{\alpha i}^{(0)} V_{i}^{(0)} U_{i\beta}^{(1)\dagger} + U_{\alpha i}^{(1)} V_{i}^{(0)} U_{i\beta}^{(0)\dagger} + U_{\alpha i}^{(0)} V_{i}^{(1)} U_{i\beta}^{(0)\dagger} \right]$$

Conclusions

- GS and perturbed density matrix formalisms.
- **②** The way Abinit handles the non-collinear density-to-*xc*-potential calculation.
- The locally collinear approximation works (untill now) for systems with collinear magnetic moments (along *z*).
- We are working to get the full non-collinear *xc*-potential estimating explicitly the effect of the $U^{(1)}$.

Conclusions

- GS and perturbed density matrix formalisms.
- **②** The way Abinit handles the non-collinear density-to-*xc*-potential calculation.
- The locally collinear approximation works (untill now) for systems with collinear magnetic moments (along *z*).
- We are working to get the full non-collinear *xc*-potential estimating explicitly the effect of the $U^{(1)}$.

Perspectives

- Extend the formalism for $q \neq 0$.
- SOC?
- S Extend the formalism for PAW.
- Full non-collinear xc functional?
- Perturbation with magnetic field.

Conclusions

- GS and perturbed density matrix formalisms.
- **②** The way Abinit handles the non-collinear density-to-*xc*-potential calculation.
- The locally collinear approximation works (untill now) for systems with collinear magnetic moments (along z).
- We are working to get the full non-collinear *xc*-potential estimating explicitly the effect of the $U^{(1)}$.

Perspectives

- Extend the formalism for $q \neq 0$.
- SOC?
- S Extend the formalism for PAW.
- Full non-collinear xc functional?
- Perturbation with magnetic field.

Next talk: application of a Zeeman magnetic field in DFPT

Conclusions

- GS and perturbed density matrix formalisms.
- **②** The way Abinit handles the non-collinear density-to-*xc*-potential calculation.
- The locally collinear approximation works (untill now) for systems with collinear magnetic moments (along *z*).
- We are working to get the full non-collinear *xc*-potential estimating explicitly the effect of the $U^{(1)}$.

Perspectives

- Extend the formalism for $q \neq 0$.
- SOC?
- S Extend the formalism for PAW.
- Full non-collinear xc functional?
- Perturbation with magnetic field.

Next talk: application of a Zeeman magnetic field in DFPT

Thank you very much for your kind attention!