Testing of JTH2 PAW table for ABINIT

François Jollet and Marc Torrent CEA, DAM, DIF F-91297 Arpajon, France

Natalie Holzwarth Department of Physics, Wake Forest University, Winston-Salem, NC 27109 USA (Dated: August 5, 2014)

A new version of the JTH table (JTHv0.2, named here JTH2) is now available. It has been tested both against the Δ and Δ_1 factors ([1],[2]) and against the lattice parameter of fcc and bcc structures, following the GBRV testing suite [3].

I. JTH2 PAW TABLE FOR ABINIT

A new version of the JTH table (JTHv0.2, named here JTH2) is now available. It has been generated with the code ATOMPAW (v4.0.0.8) [4]. This new version follows the XML format defined in [5]. Compared with the JTHv0.1 version, some paw radii have been reduced (especially d ones) to take into account the work of Garrity et al. [6]. With these modifications, we obtain a table that gives good results both for the fcc and bcc structures, and for the Δ and Δ_1 factors.

II. PAW ATOMIC DATA VALIDATION AGAINST THE DELTA FACTOR

We have used the delta calculation package (version 3.0 [7]) to validate our new atomic data against the Wien2k code. The electronic structure calculations have been performed thanks to the ABINIT code [8]. For this we have used the recommended values [1] for the k-point sampling (6750/N k-points in the Brillouin zone for a N-atom cell). A Fermi-Dirac broadenning of 0.002 Ha has been used. As indicated in [1], we have used the cystallographic data (CIF's files) provided with the delta calculation package. The Equation of State (EOS) of each element has been adjusted to a Birch-Murnaghan one thanks to seven calculations at seven different volumes, ranging from 0.94 to 1.06 $V_{\rm S}$, where $V_{\rm S}$ is the equilibrium volume deduced from the CIF's file, without geometry optimisation to be exactly in the same conditions as the Wien2k calculations.

The version 3.0 of the delta calculation package gives both the delta factor and the modified delta1 factor proposed by [2]. For the JTH2 table, we obtain the mean values of $\Delta=0.56$ meV and $\Delta_1=1.32$ meV for a 20 Ha cutoff, which are very good results (see [7] for comparison with other PAW data). The detailed results for each elements are given here:

Delta values of JTH2.txt with respect to WIEN2k.txt (in meV/atom) # (71 elements of 71 included) # calculated with calcDelta.py version 3.0 # from left to right: Delta [meV/atom] - relative Delta [%] - Delta1 [meV/atom] #-----H 0.249 27.5 4.187 He 0.008 10.8 1.662 Li 0.052 3.7 0.562 Be 0.056 1.1 0.173 B 0.244 2.8 0.426 1.806 14.5 2.206 С N 0.499 6.2 0.947 Ο 0.244 5.1 0.768

#-----

F	0 1 2 0	1 1	0 600
г	0.139	4.1	0.623
Ne	0.014	7.7	1.227
Ma	0 550	27 F	E 740
Na	0.552	31.5	5.748
Mg	0.449	10.7	1.637
۸ï	0 008	1 5	0 220
AT	0.090	1.5	0.225
Si	0.307	3.3	0.507
Р	0 488	66	1 003
â	0.100	4.0	1.000
S	0.304	4.2	0.636
Cl	0.062	1.7	0.252
٨٠	0 020	16 0	2 150
AT	0.052	10.0	2.409
Κ	0.069	5.1	0.778
Ca	0 205	55	0 842
a	0.200	0.0	0.012
SC	0.023	0.3	0.052
Ti	1.252	12.7	1.930
v	1 688	13 6	2 074
v	1.000	10.0	2.014
Cr	0.723	6.7	1.024
Mn	0.892	13.6	2.050
E.e.	0 557	E 0	0 762
ге	0.557	5.0	0.763
Co	1.235	10.4	1.584
Νi	1 604	14 6	2 230
~	1.001		2.200
Cu	0.821	9.5	1.444
Zn	0.092	1.6	0.242
Ca	0 530	10 4	1 59/
ua a	0.550	10.4	1.094
Ge	0.555	7.7	1.181
As	0.519	6.6	1.005
So	0 238	3 3	0 510
se	0.230	5.5	0.510
Br	0.109	2.4	0.369
Kr	0.021	9.3	1.441
 D1-	0.000	00 4	2 44 5
RD	0.288	22.4	3.415
Sr	0.785	24.7	3.772
v	0 333	49	0 737
_ 1	0.000	1.0	0.101
Zr	0.245	2.2	0.336
Nb	0.198	1.3	0.193
Mo	1 561	75	1 1//
-	1.501	1.5	1.144
Τс	1.031	4.7	0.715
Ru	0.344	1.6	0.241
Ph	0 944	Б 1	0 781
1111	0.944	5.1	0.781
Pd	1.161	8.9	1.360
Ag	0.325	3.9	0.602
60	0.015	20 0	E 006
Cu	2.015	30.0	5.000
In	0.839	16.6	2.547
Sn	0.726	10.7	1.638
01	0.020	44 4	1.740
SD	0.931	11.4	1.740
Te	0.069	0.9	0.131
Т	0 727	15 2	2 319
	0.121	10.2	2.015
Хe	0.010	4.2	0.645
Cs	0.115	9.9	1.500
Ra	0 836	20 F	1 199
ла т	0.000	23.0	-T. +00
Lu	0.211	3.1	0.464
Hf	0.192	1.6	0.239
т~	0 701	1 2	0 656
Id	0.101	4.3	0.000
Ŵ	1.362	5.5	0.835
Re	0.885	3.2	0.487
Ωe	1 0/10	3 6	0 552
90	エ・ワヨジ	0.0	0.002

Ir	0.568	2.2	0.337	
Pt	2.105	10.6	1.616	
Au	1.108	8.6	1.323	
Hg	0.206	15.4	2.420	
Tl	0.261	6.0	0.912	
Рb	0.355	5.4	0.824	
Bi	0.236	2.9	0.446	
Ро	0.194	2.2	0.338	
Rn	0.033	11.8	1.835	
#				
#np	mean	0.560	8.6 1.322	
#np	.std	0.520	7.9 1.214	
#np	.max	2.105	38.0 5.886	(Pt, Cd, Cd)
#np	.min	0.008	0.3 0.052	(He, Sc, Sc)
#				

We have also studied the convergency of the delta factor with the energy cutoff. We have calculated the delta factor for each element for Ecut=10 Ha, 12 Ha, 15 Ha, 17.5 Ha, 20 Ha, 25 Ha and 40 Ha. The following table shows the absolute difference of the Δ_1 factor in meV compared to the converged value at Ecut=40 Ha.

# Ecut 10 Ha 12		12 Ha	15 Ha	17.5 Ha	20 Ha	25 Ha	40 Ha
Н	17.325	15.781	12.047	7.064	3.670	0.291	0.000
He	26.637	75.749	2.172	3.652	1.206	3.253	0.000
Li	1.061	1.086	0.761	0.304	0.271	0.199	0.000
Be	11.198	-0.376	1.525	-0.077	-0.299	-0.116	0.000
В	0.072	1.029	0.986	0.367	0.099	0.040	0.000
С	4.127	0.588	0.513	0.458	0.493	0.002	0.000
Ν	5.949	15.606	13.675	4.024	0.781	0.098	0.000
0	70.776	31.858	9.273	0.866	0.351	0.282	0.000
F	108.920	12.951	8.662	0.561	0.320	-0.232	0.000
Ne	5.777	10.853	9.952	19.122	-1.171	2.584	0.000
Na	-6.505	7.646	-2.084	0.475	-0.757	-1.092	0.000
Mg	0.062	0.351	0.267	0.355	0.174	0.191	0.000
Al	3.095	1.192	-0.168	-0.210	-0.171	-0.026	0.000
Si	-0.375	-0.277	-0.070	-0.090	-0.026	-0.018	0.000
Ρ	4.953	2.296	-1.333	-1.013	-0.591	-0.044	0.000
S	5.416	4.192	0.911	-0.659	-0.573	-0.047	0.000
Cl	9.561	8.118	2.845	0.196	-0.813	-0.112	0.000
Ar	13.592	7.560	3.548	3.788	1.662	-0.080	0.000
Κ	4.136	4.020	0.680	-0.046	-0.012	-0.224	0.000
Ca	0.106	0.106	-0.592	-0.291	-0.048	-0.089	0.000
Sc	0.781	0.467	0.109	-0.001	-0.032	-0.022	0.000
Ti	-0.620	0.333	0.003	-0.007	0.014	-0.021	0.000
V	0.335	-0.034	0.008	-0.035	-0.003	-0.027	0.000
\mathtt{Cr}	4.227	8.864	5.156	0.205	-3.626	-0.780	0.000
Mn	49.221	1.189	0.293	1.564	-0.026	0.306	0.000
Fe	19.818	-0.151	0.010	-0.193	-0.056	0.209	0.000
Co	30.284	1.326	0.097	1.766	0.939	0.328	0.000
Ni	452.240	39.614	18.881	21.212	-1.858	-0.565	0.000
Cu	12.597	13.509	1.787	2.840	1.095	-0.027	0.000

Zn	43.927	1.891	0.572	0.737	0.214	0.141	0.000
Ga	20.330	3.419	0.402	0.006	0.038	-0.038	0.000
Ge	22.142	4.919	1.008	0.328	0.038	-0.021	0.000
As	0.144	0.559	0.083	0.100	0.016	-0.001	0.000
Se	0.103	1.198	0.129	0.377	0.043	0.007	0.000
Br	-0.335	0.499	-0.234	-0.293	-0.046	0.011	0.000
Kr	0.783	2.318	0.215	0.565	0.242	-0.127	0.000
Rb	1.886	0.008	-0.711	-0.157	-0.178	0.067	0.000
Sr	-0.773	-0.456	0.132	0.100	0.150	0.110	0.000
Y	0.362	1.018	0.079	0.054	-0.076	-0.020	0.000
Zr	3.456	0.270	0.035	0.054	0.164	0.038	0.000
Nb	1.303	0.820	-0.145	-0.173	-0.229	0.016	0.000
Mo	1.004	-0.019	-0.066	0.056	-0.093	0.007	0.000
Tc	1.047	-0.534	-0.229	-0.116	-0.062	-0.011	0.000
Ru	0.298	0.454	-0.056	-0.140	-0.070	0.061	0.000
Rh	1.606	1.432	-0.814	0.293	-0.296	-0.337	0.000
Pd	21.532	14.000	5.090	0.018	0.351	0.295	0.000
Ag	1.357	-0.216	-0.233	-0.195	-0.143	-0.014	0.000
Cd	29.805	-1.707	-0.676	-0.291	0.179	0.029	0.000
In	-0.015	0.006	-0.009	0.009	0.012	-0.002	0.000
Sn	0.066	0.061	0.013	0.014	0.005	-0.004	0.000
Sb	2.467	1.211	0.319	0.169	0.159	0.148	0.000
Te	0.505	0.151	-0.108	-0.033	-0.021	-0.010	0.000
I	0.296	0.046	0.075	0.066	-0.011	0.007	0.000
Xe	3.969	8.409	7.455	4.665	-1.216	1.554	0.000
Cs	5.666	4.324	7.542	-0.026	0.861	0.182	0.000
Ba	2.482	0.390	0.580	-0.424	0.183	0.154	0.000
Lu	8.428	1.500	0.670	0.133	0.051	0.061	0.000
Hf	1.692	0.080	0.053	0.011	0.062	0.019	0.000
Ta	-0.372	1.324	0.141	0.160	0.058	0.004	0.000
W	0.386	0.688	0.379	0.479	0.469	0.073	0.000
Re	1.769	0.692	0.108	0.078	0.245	0.015	0.000
0s	20.535	9.966	0.492	0.166	0.197	-0.098	0.000
Ir	1.566	0.265	0.070	0.247	0.022	0.030	0.000
Pt	18.814	5.866	0.787	0.724	0.343	0.101	0.000
Au	29.222	7.812	1.280	0.992	0.318	0.122	0.000
Hg	122.942	23.485	1.260	0.955	0.292	0.080	0.000
Tl	0.395	0.146	0.042	0.064	0.067	-0.009	0.000
Pb	0.071	0.031	0.015	0.026	0.008	0.003	0.000
Bi	0.106	0.020	0.025	-0.004	0.008	0.005	0.000
Ро	0.035	0.056	0.164	-0.054	0.004	0.028	0.000
Rn	2.597	1.358	2.817	1.210	1.222	0.069	0.000

From this table we have calculated recommended values for the cutoff energy: Low value: $abs(\Delta_1-\Delta_1(40Ha)) < 5 \text{ meV}$ Medium value: $abs(\Delta_1-\Delta_1(40Ha)) < 2 \text{ meV}$ High value: $abs(\Delta_1-\Delta_1(40Ha)) < 1 \text{ meV}$

These values are given here and are inserted inside each PAW data XML file for each element.

Ecut low medium high

H 20.00 25.00 25.00 He 15.00 25.00 25.00

Li	10.00	10.00	15.00
Be	12.00	12.00	17.50
В	10.00	10.00	15.00
С	10.00	12.00	12.00
Ν	17.50	20.00	20.00
0	17.50	17.50	17.50
F	17.50	17.50	17.50
Ne	20.00	25.00	25.00
Na	15.00	17.50	25.00
Mg	10.00	10.00	10.00
Al	10.00	12.00	15.00
Si	10.00	10.00	10.00
Р	10.00	15.00	20.00
S	12.00	15.00	15.00
C1	15.00	17.50	17.50
Ar	15.00	20.00	25.00
K	10.00	15.00	15.00
Ca	10.00	10.00	10.00
SC T÷	10.00	10.00	10.00
11	10.00	10.00	10.00
V Cr	17 50	25 00	25.00
Mm	12 00	25.00	25.00
мп Бо	12.00	12.00	20.00
Co	12.00	12.00	20.00
Ni	20 00	20 00	20.00
Cu	15 00	20.00	25.00
Zn	12.00	12.00	15.00
Ga	12.00	15.00	15.00
Ge	12.00	15.00	17.50
As	10.00	10.00	10.00
Se	10.00	10.00	15.00
Br	10.00	10.00	10.00
Kr	10.00	15.00	15.00
Rb	10.00	10.00	12.00
Sr	10.00	10.00	10.00
Y	10.00	10.00	15.00
Zr	10.00	12.00	12.00
Nb	10.00	10.00	12.00
Mo	10.00	10.00	12.00
Τс	10.00	10.00	12.00
Ru	10.00	10.00	10.00
Rh	10.00	10.00	15.00
Pd	17.50	17.50	17.50
Ag	10.00	10.00	12.00
Cd	12.00	12.00	15.00
In	10.00	10.00	10.00
Sn	10.00	10.00	10.00
Sb	10.00	12.00	15.00
Te	10.00	10.00	10.00
⊥ v	10.00	10.00	10.00
хе С-	17.50	20.00	25.00
US Ba	10 00	10 00	12 00
Da	TO'00	12.00	12.00

12.00	12.00	15.00			
10.00	10.00	12.00			
10.00	10.00	15.00			
10.00	10.00	10.00			
10.00	10.00	12.00			
15.00	15.00	15.00			
10.00	10.00	12.00			
15.00	15.00	15.00			
15.00	15.00	17.50			
15.00	15.00	17.50			
10.00	10.00	10.00			
10.00	10.00	10.00			
10.00	10.00	10.00			
10.00	10.00	10.00			
10.00	17.50	25.00			
low(10)	= 42 n_	low(12)= 10 n_low(15)= 9 n_low(17.5)= 7 n_low(20)= 3 n_low(25)= 0			
<pre>#n_med(10)= 33 n_med(12)= 12 n_med(15)= 10 n_med(17.5)= 7 n_med(20)= 5 n_med(25)= 4</pre>					
high(10)= 19 n	_high(12)= 12 n_high(15)= 17 n_high(17.5)= 9 n_high(20)= 5 n_high(25)= 9	Э		
	12.00 10.00 10.00 15.00 15.00 15.00 15.00 15.00 15.00 10.00 10.00 10.00 10.00 10.00 10.00 high(10	12.00 12.00 10.00 10.00 10.00 10.00 10.00 10.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 17.50 low(10)= 42 n_i med(10)= 33 n_i high(10)= 19 n	12.00 12.00 15.00 10.00 10.00 12.00 10.00 10.00 15.00 10.00 10.00 12.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 17.50 15.00 15.00 17.50 15.00 10.0		

III. PAW ATOMIC DATA VALIDATION AGAINST FCC AND BCC STRUCTURE

Following [6], we have calculated the lattice parameters for fcc and bcc structures and compare the results to a WIEN2k calculation in the same conditions. The calculations were performed with the ABINIT code with the following input files: For fcc structures (example for Al):

ndtset 7 nsym O occopt 3 pawovlp -1 prteig 0 prtden 0 prtcif 1 tsmear 0.001 ecutsm 0.5 ecut 20 pawecutdg 40 chkprim 0 usexcnhat -1 ngkpt 8 8 8 shiftk 0.0 0.0 0.0 chksymbreak 0 paral_kgb 0 nstep 99 toldfe 1.0d-8 getwfk2 -1 getwfk3 -1 getwfk4 -1 getwfk5 -1 getwfk6 -1 getwfk7 -1

```
scalecart3 3*0.9932883883792687
scalecart2 3*0.986484829732188
scalecart1 3*0.9795861087155615
scalecart5 3*1.006622709560113
scalecart6 3*1.0131594038201772
scalecart7 3*1.0196128224222163
acell 4.04021000000
                        4.04021000000
                                          4.040210000000 angstrom
xred 0 0 0
rprim 0.0 0.5 0.5
     0.5 0.0 0.5
     0.5 0.5 0.0
natom 1 typat 1
ntypat 1
znucl 13
nband 8
```

For bcc structures(example for Al):

ndtset 7 nsym O occopt 3 pawovlp -1 prteig 0 prtden 0 prtcif 1 tsmear 0.001 ecutsm 0.5 ecut 20 pawecutdg 40 chkprim 0 usexcnhat -1 ngkpt 8 8 8 shiftk 0.5 0.5 0.5 chksymbreak 0 paral_kgb 0 nstep 99 toldfe 1.0d-8 getwfk2 -1 getwfk3 -1 getwfk4 -1 getwfk5 -1 getwfk6 -1 getwfk7 -1 scalecart3 3*0.9932883883792687 scalecart2 3*0.986484829732188 scalecart1 3*0.9795861087155615 scalecart5 3*1.006622709560113 scalecart6 3*1.0131594038201772 scalecart7 3*1.0196128224222163

```
acell 3.24000000000 3.2400000000 3.2400000000 angstrom

xred 0 0 0

rprim -0.5 0.5 0.5

0.5 -0.5 0.5

0.5 0.5 -0.5

natom 1 typat 1

ntypat 1

znucl 13

nband 8
```

A summary of the results is presented Table I. The values for GBRV in ABINIT and the values used for AE reference calculations come from [6].

Test	$\operatorname{GBRV-Abinit}$	JTH2-Abinit
fcc latt. const. (%)	0.13	0.13
bcc latt. const. $(\%)$	0.14	0.14

Table I: Summary of PAW data files testing (RMS errors reltaive to AE calculations)

The detailed results for each element is given on fig.1 for fcc structures and fig.2 for bcc structures. On these figures, the results for noble gases have been set to zero as we have no AE reference calculations. They have not been taken into account for RMS error calculations.

Figure 1: Percent difference in AE versus PAW data calculations for fcc lattice constant

Following [6], we have also calculated magnetic moments of transition metal oxides with non-zero magnetic moments at the AE non-spin polarized lattice constant. The magnetic moments are given in μ_B per primitive cell. The AE results come from [6]. The calculations have been done with a 12x12x12 k-point mesh.

Figure 2: Percent difference in AE versus PAW data calculations for bcc lattice constant

Compound	μ_{AE}	$\mu_{GBRV-Abinit}$	$\mu_{JTH2-Abinit}$
VO	1.32	1.27	1.24
CrO	2.99	3.04	3.05
MnO	3.85	3.84	3.86
FeO	3.83	3.84	3.86
CoO	2.42	2.53	2.56
NiO	1.68	1.47	1.36
MoO	0.54	0.53	0.49
TcO	1.92	1.90	1.95
RuO	1.64	1.63	1.67
OsO	1.56	1.50	1.50
IrO	0.62	0.62	0.75

Table II: Summary of PAW data files testing (RMS errors reltaive to AE calculations)

IV. CONCLUSIONS

The JTH2 table has good accuracy and efficiency compared to other packages makes it a good candidate for high-throughput calculations. This new table is provided as XML files, that makes it easily readable by all the PAW codes. It is distributed on the ABINIT web site [9].

V. ACKNOWLEDGMENTS

The authors thank Bernard Amadon and Kevin Garrity for helpful discussions concerning the generation of PAW atomic data. This work was partly performed using HPC resources from the French Research and Technology Computing Center (CCRT).

K. Lejaeghere, V. Van Speybroeck, G. Van Oost, and S. Cottenier, Crit. Rev. Solid State Mater. Sci. 39, 1 (2014).

^[2] F. Jollet, M. Torrent, and N. Holzwarth, Computer Physics Communications 185, 1246 (2014).

- [3] K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, Comp. Mat. Sci. 81, 446 (2014).
- [4] https://users.wfu.edu/natalie/papers/pwpaw/man.html/ (2014).
- [5] https://wiki.fysik.dtu.dk/gpaw/setups/pawxml.html (2014).
- [6] https://www.physics.rutgers.edu/gbrv/ (2014).
- [7] https://molmod.ugent.be/DeltaCodesDFT (2014).
- [8] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, et al., Comput. Phys. Comm. 180, 2582 (2009).
- [9] https://abinit.org (2014).