
Software engineering concepts in ABINIT 1

Software engineering concepts in ABINIT
• I. Software engineering ... for physicists

° “The mythical Man-Month” (1975)
° “No silver bullet” (1986)
° “The Cathedral and the Bazaar” (1997)

• II. Assessment of the ABINIT project
• III. The future

° More code re-use
° The FSAtom

Ideas to be discussed !

Software engineering concepts in ABINIT 2

Software engineering ... for physicists
• Our expertise ... is NOT software engineering !
• What is software engineering ?

° Not the fact of switching from FORTRAN to C++... !!
° A human science : How to improve the developer’s

productivity ? (similarly to machine productivity)
° Potentially very important to us ...
° Compare with hardware evolution : “No single software

engineering development will produce an order-of-
magnitude improvement in programming productivity
within ten years” F. Brooks, No silver bullet, 1986.

° The Linux “experience” ...

The mythical man-month

Ref.: The mythical man-month. Essays on software engineering.
Anniversary edition (1995)
Frederick P. Brooks, Jr. Addison-Wesley

Software engineering concepts in ABINIT 4

“The mythical Man-Month” (I)
• Essays on software engineering, by F. Brooks

3First edition 1975, reprinted many times, 20th anniversary edition
1995 (contains “No Silver Bullet”). IBM-360 system chief architect.

3Basic, easy to read. Some recipes are just organisation recipes.
3“Large and small, massive or wiry, team after team has become

entangled in the tar. No one thing seems to cause the difficulty <...>
but the accumulation of simultaneous and interacting factors brings
slower and slower motion. Everyone seems to have been surprised
by the stickiness of the problem, and it is hard to discern the nature
of it. But we must try to understand it if we are to solve it”.

• Questions :
3What really takes time ?
3How to make a group have better productivity ?
3Can (software) tools improve the productivity ?

Software engineering concepts in ABINIT 5

“The mythical Man-Month” (II)
• What takes time ?

Component Integrated
Component

Product Integrated
product

x 3

x 3 x 3

x 3

Clean I/Os
File formats
Interfaces

Documentation
Testing, portability
Maintenance

This is what we want to
rely on, for our
long-term research !

Software engineering concepts in ABINIT 6

“The mythical Man-Month” (III)
• How to make a group have a better productivity ?

° “The man-month as a unit for measuring the size of a job
is a dangerous and deceptive myth”

° First, each person need training
° Then, software construction is a system effort

(the bearing of a child takes nine months, no matter how many women are assigned)

=> communication effort can dominate the decrease
in individual task time brought by partitioning.
=> need : division of labor + specialisation of function

Also, in our case, each person has his own agenda, his own
strengths and weaknesses ... Large productivity variations.

Software engineering concepts in ABINIT 7

“The mythical Man-Month” (IV)
• Conceptual integrity

° According to Brooks : “Conceptual integrity is the most
important consideration in system design. It is better to
have a system omit certain anomalous features and
improvements, but to reflect one set of design ideas,
than to have one that contains many good but
independent and uncoordinated ideas.”

° How is conceptual integrity to be achieved ?
° The small team concept (or even the surgical team)
° Solution : Disentangle system architecture and

component implementation => centers of decision
• “Cathedral building” : a large team and integrity !

Software engineering concepts in ABINIT 8

“The mythical Man-Month” (V)
• Additional : specificities of software engineering

° Productivity seems constant in terms of elementary
statements => programming productivity may be
increased as much as five times when the suitable high-
language is used (F90 is OK ... for selected parts ...)

° “Representation is the essence of programming” (meaning
datastructures, file formats). Not flowcharts ! => towards
object-oriented.

° Ways to keep conceptual integrity : Manual -
Documentation - Rules

° Self-documentation : the documentation is in the program.
Adjustment to humans’ brain limited content !

Software engineering concepts in ABINIT 9

“The mythical Man-Month” (VI)
• Further ideas :

° A redesign is inevitable, for all components : the only
constancy is change itself. So, plan the system for
change... And have tools for version maintenance ...

° Program maintenance : unlike for a car, no cleaning,
lubricating, repair of deterioration. The needed changes
repair design “defects”. These appear because of new
functionalities to be implemented. Moreover, fixing a
defect has a substantial (20%-50%) chance of
introducing another ! Importance of automatic testing.

° Adiabatic changes : quick debugging; references for
tests; adding one component at a time.

No silver bullet

Ref.: “Information processing 1986”, proceedings of the IFIP tenth
World Computing Conference, ed. H.-J. Kugler (1986), pp. 1069-76.
Reprinted in The mythical man-month. Essays on software
engineering. Anniversary edition (1995)
Frederick P. Brooks, Jr. Addison-Wesley

Software engineering concepts in ABINIT 11

“No silver bullet” (1986) by Brooks (I)
• Essence / Accidents in software development

(refers to Aristotle categories)
° Essence : the fashioning of the complex conceptual

structures that compose the abstract software entity
° Accident : the implementation process itself, actual

typing, with hardware and software problems, loss of
concentration by the programmer, ...

• What is the ratio between them ?
° Brooks argued that (in 1986) essence is more than 10%

of development time, that it is inherently complex, and
that it is not addressed by emerging software
engineering concepts.

Software engineering concepts in ABINIT 12

“No silver bullet” (II)
• Essence of software development

° construct of interlocking concepts : data sets,
relationships among data items, algorithms and
invocation of functions ; need specification, design,
testing, refinement

° independent of the representation (language)
° “a scaling-up of a software entity is not merely a

repetition of the same elements in larger size; it is
necessarily an increase in the number of different
elements. In most cases, the elements interact with each
other in some nonlinear fashion, and the complexity of
the whole increases much more than linearly”

Software engineering concepts in ABINIT 13

“No silver bullet” (III)
• How to address the “essence” bottleneck ?

° Use already existing software ! Software re-use.
3Conceptual work already done
3Debugged, tested, I/O set-up !
3Add “integrated product” to the system (need adequate licence)
3Can be completely external (e.g. in our case, ROBODOC)
3Can be internal re-use : need modularity !

° Rapid prototyping, then organically grow the software
3Iterative extraction of product requirement : the prototype make

real the conceptual structure specified, and allow adjusted set-
up of “details”

3Grow, not build software : incremental development, top-down
design. Also psychological: one has something that works.

Software engineering concepts in ABINIT 14

“No silver bullet” (IV)
• Overall : no silver bullet to kill the werewolf

• This principle was said to be, for software
engineering, similar to Heisenberg’s principle, or
Gödel’s theorem : a useful information !

• Still, the question of group effort occurs ...

Building software takes some uncompressible human
time, even if we eliminate the accidental difficulties,
and attack the essential difficulties in an efficient way.

The cathedral and the bazaar

Ref.: http://www.tuxedo.org/~esr/writings/cathedral-bazaar

Software engineering concepts in ABINIT 16

“The cathedral and the bazaar” (I)
• Eric S. Raymond (1997). Early contributor to GNU.

Analysis of LINUX project. Enthousiastic : read the intro !
• Anatomize another open source project. Single out two

dozens of propositions related to the process of software
development, most of which related to the LINUX
experience. Bazaar-like style of development ?!

• Again : “software re-use”, “grow, not build”, “rapid
prototyping”

• LINUX used the GNU General Public Licence. “Free
software” or “Open Source Software”. Key concept.

Software engineering concepts in ABINIT 17

“The cathedral and the bazaar” (II)
• 1. Every good work of software starts by scratching a

developer’s personal itch (Motivation)
• 5. When you lose interest in a program, your last duty is to

hand it off to a competent successor
• 6. Treating your users as co-developers is your least-hassle

route to rapid code improvements and effective debugging
• 7. Release early. Release often. And listen to your

customers.
• 8. Given a large enough beta-tester and co-developer base,

almost every problem will be characterized quickly and the
fix obvious to someone (Linus’ law)

Debugging is parallelizable !

Software engineering concepts in ABINIT 18

“The cathedral and the bazaar” (III)
• 9. Smart data structures and dumb code works a lot better

than the other way around.
• 11. The next best thing to having good ideas is recognizing

good ideas from others. Sometimes the latter is better.
• 13. Perfection (in design) is achieved not when there is

nothing more to add, but rather when there is nothing more
to take away.

• 19. Provided the development coordinator has a medium at
least as good as the Internet, and known how to lead
without coercion, many heads are inevitably better than one

• Cathedral vs bazaar ?? Cathedral AND bazaar !

Assessment
of the

ABINIT project

Software engineering concepts in ABINIT 20

Assessment of the ABINIT project (I)

• Are we doing well ? What’s our future ?
• Standard measures of success for an atomic-scale

simulation tool :
° speed (sequential, parallel) + memory
° set of properties (e.g. : energy, DOS, MD, excited states ...)
° generality (functionals, type of systems, treatment of spin...)

• Software engineering measure of success
° user’s interface, I/Os
° documentation (for users, for developers)
° stability, portability

• Number of users, number of publications

Software engineering concepts in ABINIT 21

Assessment of the ABINIT project (II)

• Speed, memory
° For a norm-conserving psp code : OK
° Compared to ultrasoft, PAW, or localised orbitals : bad.
° Parallelism : still missing large-scale, but should come !

• Set of properties :
° quite large (the largest ?), steadily improving
° usually not the leader code in one specific domain
° missing : nuclear properties, orbital decompositions, Car-

Parrinello, Hartree-Fock ... Also, weak points.
• Generality

° quite large (especially spin-orbit, non-collinear)

(personal view ... biased)

Software engineering concepts in ABINIT 22

Assessment of the ABINIT project (III)

• User’s interface, I/Os
° as concern file-oriented : excellent
° need graphical ?
° well-structured files, but need systematic approach

• Documentation
° for users : already quite good
° but see Mikami-san’s talk

• Stability, portability
° stable, but still problems with iterative convergence for

some systems (e.g. metal/vacuum ; floppy molecules)
° portability : excellent

(personal view ... biased)

(XML, netCDF)

Software engineering concepts in ABINIT 23

Assessment of the ABINIT project (IV)

• Internal measures of success ... software engineering
concepts ...
° GPL licence rapid building of a user+dev group

3no diversion of forces due to management of licences ...
3debugging is parallel ... still might be better ...
3do we need money from industry ? sponsoring ...
3visibility of ABINIT

° Set of rules and protocol to attack the scaling of components
to integrated product (portability; documentation; self-
documentation;I/Os; interfaces; testing)

° Conceptual integrity : OK, from “Corning”, “RESPFN”,
then “coding standards”, but please, try to adhere !
Especially, DOCUMENT your routines ! A challenge...

(personal view ... biased)

Software engineering concepts in ABINIT 24

Assessment of the ABINIT project (V)

• More on software engineering concepts ...
° Languages :

3F90 for compute-related code (recently, evolved towards full use of
F90 capabilities , not far of object-oriented)

3PERL for automatic testing, and different scripts (+ also shell)
3HTML for the doc
3XML + Python ?

° Data structures : evolving
° Group work : following Linux

3autonomy of different groups
3accept all contributions
3release early, release often : true, compared to other atomic-scale

softwares

(personal view ... biased)

Software engineering concepts in ABINIT 25

Assessment of the ABINIT project (VI)

• More on software engineering concepts ...
° Re-use : external

3ROBODOC : very succesful
3MPI/OpenMP, BLAS/LAPACK (a bit weak), make, PERL, CPP
3CVS
3Sympa, CGI scripts

° Re-use : internal
3sometimes OK, but ... see spline routines !
3directories ? modules ? lack of documentation ? packaging ?

° Motivation : high if related to the research of each
contributor ... but must be convinced that it is worth to
follow the rules, and return the module+tests

(personal view ... biased)

Software engineering concepts in ABINIT 26

Assessment of the ABINIT project (VII)

• Summary
° Our strengths for the future :

3Linux type of organisation, motivated centers
3mastering of software engineering concepts
3already a wealth of properties

° Major weaknesses (esp. speed) should be overcome soon :
3PAW
3MPI-parallel FFT

• How to make it pay off for each ABINIT member ??
° Can we live with ABINIT and clear water ?
° For physicists : implementation papers ... feel free ...
° Boost your citation rate !

(personal view ... biased)

A better future :
More code re-use

Software engineering concepts in ABINIT 28

External code re-use

• What are the emergent “packages” or “languages” that
could play a role in our project ?
° XML : extended markup-language.

3Emerging standard for formatted files
3Strong structure, readable by humans and machines
3Code re-use : tools developed by computer scientists (translator,

grammar checker, postprocessor for Web formatting)
3In ABINIT v4.0 : input + output (actually CML)

° Python : scripting language
3Easy manipulation of complex objects (dynamical, strong data-

typing ; object-oriented)
3Available interfaces with XML, graphical routines , GUI, ...

° NetCDF

Software engineering concepts in ABINIT 29

Internal code re-use

• How to improve internal code re-use ?
° More self-documentation ?
° Constitution of more autonomous libraries ?
° Automatic indexing ?

The Free Software Project for
Atomic-Scale Simulations

(FSAtom)

Software engineering concepts in ABINIT 31

Beyond the licence : links between developers ?

• present situation in the Atomic-Scale Computation
community
° many different codes coexist, with different licences
° biodiversity is nice, but should allow cross-comparison
° (friendly) rivalry

• search for links (easier, thanks to the FS concept)
° CECAM 2001 discussion workshop (7 participants)
° CECAM 2002 ‘Open Source software for microscopic

simulations’ (25 participants - from large-scale atomistic, to
Quantum Monte Carlo, through ab initio - nearly no
Quantum Chemist)

Software engineering concepts in ABINIT 32

Toward links ... objects

• there are many codes implementing the same concepts
(with a loss of human time)

• but accurate comparison is not done on a systematic
basis

• pseudopotentials, list of atoms, wavefunctions ...
• files ? structured arrays ?

Common objects ?

Common patterns and methods ?

Software engineering concepts in ABINIT 33

Possible actions beyond the licence

• standards for file formats
• standards for objects and methods
• constitution of libraries
• protocol for comparison of code accuracy
• protocol for comparison of code speed
• organization of events for discussion, exchange,

learning ...

Need time, and a structure ...

Software engineering concepts in ABINIT 34

FSAtom : I. Purpose

The Free Software project for Atomic-Scale
Computations has the aim:
- to spread the use of the “free software” concept in
the community of Atomic-Scale computation
software developers,
- to improve the awareness of modern software
engineering concepts, and
- to constitute the natural place for interactions
between different groups of developers in this
field.

Software engineering concepts in ABINIT 35

FSAtom: II. Means of Action

• Web site (hosted by CECAM), with mailing lists and
links (http://www.fsatom.org)

• workgroups to organize the collaboration between
developers (file exchange, code testing, definition of
objects, exchange of expertise ...)

• organisation of workshops and tutorials
• contact with the Free Software Foundation
• contact with funding agencies

Software engineering concepts in ABINIT 36

FSAtom: III. Organisation

• Steering committee (elected at CECAM 2002)
° D. Ceperley
° X. Gonze (elect. chair)
° K. Hinsen (resp. workgroup interfaces and middleware)
° K. Jakobsen (resp. workgroup pseudopotentials)
° L. Kale
° M. Marques
° G. Martyna
° D. Van Der Spoel (resp. workgroup testing MD)
° G. Zerah (resp. workgroup testing DFT)

Software engineering concepts in ABINIT 37

Summary

• Brief history of “software engineering”
° Cathedral AND bazaar

• Assessment of the ABINIT project
° Speed, properties, generality
° Linux style group effort !!
° Conceptual integrity : rules, self-documentation ...
° Need more software re-use : external, internal
° XML, Python, NetCDF (also the future within FSAtom)

Free Software
or

Open Source Software

(This is kind of an appendix to the talk, in case of questions)
(See http://www.fsf.org and http://www.fsf.org/licenses/licenses.html)

Software engineering concepts in ABINIT 39

A key : “Free software” or “Open Source”

• Free for freedom, not price
° user’s freedom 1 : unlimited use for any purpose
° user’s freedom 2 : study and modify for your needs
° user’s freedom 3 : copy
° user’s freedom 4 : distribute modifications

• From copyright to freedom (copyleft?)
° copyright allows licensing
° licenses grants freedom

• Terminology : Free software=Open source=Libre software

If one freedom is missing : “proprietary software”.

Software engineering concepts in ABINIT 40

Licences ...
• Many types

° GNU General Public Licence
° GNU Lesser General Public License (links are possible)
° BSD licence
° X11 licence, Perl licence, ...
° public domain release

• GNU General Public Licence
° grants four freedoms
° protection of freedom
° «!vaccination!»

Software engineering concepts in ABINIT 41

Free software properties
• Reasons to use

° stability (‘!Peer review!’)
° short turn-around cycles for bugfixes : no loss of prestige
° future-proof
° secure investment

• Reasons to develop
° altruism, fun, satisfaction
° testing, education
° strategic reasons: society, democracy, ...

