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Density Functional Theory
The Basis of Most Modern Calculations

Hohenberg-Kohn; Kohn-Sham — 1965

Defined a new approach to the
many-body interacting electron problem
* Yesterday

— Brief statement of the Hohenberg-Kohn theorems and
the Kohn-sham Ansatz

— Overview of the solution of the Kohn-Sham equations and the
importance of pseudopotentials in modern methods

 Today

— Deeper insights into the Hohenberg-Kohn theorems and
the Kohn-sham Ansatz

— The nature of the exchange-correlation functional

— Understanding the limits of present functionals and
the challenges for the future
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( The Fundamental Hamiltonian )

Interacting electrons in an external potential
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e Only one small term: The kinetic energy of the nuclei

e If we omit this term, the nuclei are a fixed external

_potentia,l a,cting; on the electrons

e The final term is essential for charge neutrality — but
is a classical term that is added to the electronic part
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( Many-Body Electron Problem )

The many-electron wavefunction is a function in 3V
dimensional space

lI’:'l’(I‘le‘Q,...,I‘N) (2)
The total energy is the expectation value

E = w = (H) = {T)+ (Vine) —|—fd3?‘%$t(r)n(r).
(W|w)

(3)

The ground state wavefunction Wy is the state with

lowest energy that obeys the symmetries of the particles

and conservation laws.

(V|H|Y)

Ey = mi RW (4)
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The basis of most modern calculations
Density Functional Theory (DFT)

Hohenberg-Kohn (1964)

Vext(r)@ no(r)
mr

J
v;({r})) = WYo({r})

All properties of the many-body system are determined by
the ground state density n(r)

Each property is a functional of the ground state density
n,(r) which is written as 1 [n]

A functional f'[n,] maps a function to a result: ny(r) — f
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The Hohenberg-Kohn Theorems

e Theorem I: For any system of electrons in an ex-
ternal potential V,,:(r), that potential is determined
uniquely, except for a constant, by the ground state
density n(r).

Corollary I: Since the hamiltonian is thus fully deter-
mined, except for a constant shift of the energy, the
full many-body wavefunction and all other properties
of the system are also completely determined!

ny(r) — V.(r) (except for constant)

— All properties

ext
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The Hohenberg-Kohn Theorems

e Theorem II: A universal functional for the energy

En] of the density n(r) can be defined for all electron
systems. The exact ground state energy is the global
minimum for a given V,.;(r), and the density n(r)
which minimizes this functional is the exact ground

state density.

Corollary II: The functional E'|n| alone is sufficient to
determine the exact eround state eneroyv and density.

Excited states of the electrons must be determined
by other means.
Minimizing E[n] for a given V_,(r) — ny(r) and E

In principle, one can find all other properties and
they are functionals of n,y(1).
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The Hohenberg-Kohn Theorems - Proof

Proot of Theorem I:

Suppose that thme were two different external poten-
tials V, ;ﬁ( ) and V. ot ( r) with the same ground state den-
sity n(r). The two external potentials lead to two differ-
ent hamiltonians, HY and H®. which have different
ground state wavefunctions, W'Y and U®) which are hy-

pothesized to have the same density n(r). Then:

g — {11;(1}‘H(l}mﬂli} < cf:lIf[Q}\Hm\llf{gj'}. (6)
which leads to

EY < B® + [ d*r{Vi) @) - VS (0)n@).  (7)
But changing the labels leads to

E® < B+ [ d*r{Vi3 (r) = Vi (0)}n(r).  (8)

which is a contradiction!
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The Hohenberg-Kohn Theorems - Continued

Generalization by Levy and Lieb

— Recast as a two step process

» Consider all many-body wavefunctions ¥ with the same density
* First, minimize for a given density n

 Next, minimize n to find density with lowest energy n,

* What 1s accomplished by the Hohenberg-Kohn theorems?
* Existence proofs
A Nobel prize for this???

* The genius is the next step —
to realize that this provides a new way to
approach the many-body problem
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The Kohn-Sham Ansatz

« Kohn-Sham (1965) — Replace original many-body problem
with an independent electron problem — that can be solved!

* The ground state density is required to be the same as the

exact density
no(r) =3 3 [of (¥)[?,
0 =1

Ver(t)  2E () no(r) =2 Vig(r)
I 0 f I

V;({r}) = WYo{r}) Yi=1 N(r) = Pi(r)

*  Only the ground state density and energy are required to be the
same as 1n the original many-body system

R. Martin - Density Functional Theory - Lecture II - UCSB - 8/2005 10



The Kohn-Sham Ansatz 11

* From Hohenberg-Kohn the ground state energy 1s a
functional of the density E [n], minimum at n =n,

e From Kohn-Sham
no(r) = > W7 ()7,
o =1

1
Ergs = 5; ; |V¢f|2+/ drVext(r)n(r)+EHartree[n]_l_EII—'_EQJC[n]‘

/

Equations for independent
articles - soluble

Exchange-Correlation
Functional — Exact theory
but unknown functional

 The new paradigm — find useful, approximate functionals
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The Kohn-Sham Ansatz 111

* Approximations to the functional E__[n]
* Requires information on the many-body system of
interacting electrons

* Local Density Approximation - LDA
* Assume the functional 1s the same as a model problem —
the homogeneous electron gas
« E . has been calculated as a function of density
using quantum Monte Carlo methods (Ceperley & Alder)

* Gradient approximations - GGA
* Various theoretical improvements for electron density
that 1s varies 1n space
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Whatis E_[n] ?

* Exchange and correlation — around each electron, other
electrons tend to be excluded — “x-c hole”

* E__1s the interaction of the electron with the “hole” —
spherical average — attractive — E__[n] <O.

Exchange hole in Ne atom
Fig. 7.2 Gunnarsson, et. al. [348]

® nucleus @ clectron

Very non-spherical

3.0

Spherical average very close
to the hole in a homogeneous
electron gas!
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Exchange-correlation (x-c¢) hole in silicon

* (alculated by Monte Carlo methods
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Hole 1s reasonably well localized near the electron

Supports a local approximation
Fig. 7.3 - Hood, et. al. [349]
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Exchange-correlation (x-c¢) hole in silicon

* (alculated by Monte Carlo methods

Exchange-correlation hole — spherical average

Bond Center

Interstitial position Comparison to scale
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x-¢ hole close to that in the homogeneous gas in the most
relevant regions of space

Supports local density approximation ! Fig. 7.4 - Hood, et. al. [349]
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The Kohn-Sham Equations

* Assuming a form for E__[n]

* Minimizing energy (with constraints) — Kohn-Sham Egs.
no(r) =3 > |97 (0)[%,
o =1

1
Exs = 5; ; |V¢f|2+/ drve:ct(r)n(r)+EHartree[n]+EI]+EZCC[n]~

0BKs _ 0 (1) Eigenvalues are
Constraint — require S1p7*(r) ’ approximation
Exclusion principle for , to the energies to
independent particle W7 195 ) = 030501 (2) " add or subtract
(A VT =0 (3 e
2 KSAE 5 I —electron bands
More later

oF OF
VI%S(Y) — Ve:ct(r)+ 5n}éiTZ§e+5n(erO')

= Vext(r) + VHa/rtree(r) + Vzcac(r)(4)
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Example of Results — Test Case

* Hydrogen molecules - using the LSDA

(from O. Gunnarsson)
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Comparisons — LAPW — PAW -
- Pseudopotentials (VASP code)

Method Si CaF» bcc Fe
a B a B | a B a B m

NCPP® [ 354 460[5.39 98|5.21 90 2 75 226°
PAW? | 3.54 460 |5.38 98|5.34 100

PAW? | 354 460 |5.40 95|5.34 101 |2.75 247 2.00
USPPY? | 3.54 461 |5.40 95|5.34 101 |2.72 237 2.08
LAPW® | 3.54 470 |5.41 98 |5.33 110 |2.72¢ 2452 2 044
EXP¢ 3.56 443 |5.43 99 |5.45 85-90|2.87¢ 172¢ 2.12d

« a— lattice constant; B — bulk modulus; m — magnetization

« aHolzwarth , et al.; ’Kresse & Joubert; °Cho & Scheffler; 9Stizrude, et al.
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What about eigenvalues?

* The only quantities that are supposed to be correct in the
Kohn-Sham approach are the density, energy, forces, ....

« These are integrated quantities
— Density n(r) =2, |\V.(r )}
— Energy E,, =2;& +F[n]
— Force F,=-dE,,/dR;,  where R, = position of nucleus I

* What about the individual ¥(r ) and g, ?

— In a non-interacting system, €. are the energies to add and subtract
“Kohn-Sham-ons” — non-interacting “electrons”

— In the real interacting many-electron system, energies to add and
subtract electrons are well-defined only at the Fermi energy

* The Kohn-Sham YW, (r ) and &, are approximate functions
- a starting point for meaningful many-body calculations
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Electron Bands

* Understood since the 1920’s - independent electron theories
predict that electrons form bands of allowed eigenvalues, with
forbidden gaps

» Established by experimentally for states near the Fermi energy

7] ]
.| Silicon \ Extra added electrons
Empty Bands ™ /—/{J\ ' s0 10 bo.ttom of
08 ﬂ:/\_ . conduction band
Gap 2
. : 7 ~<__ Missing electrons
Filled Bands (holes) go in top of
ot b | —— |
] valence band
ok /-\“\-._,_ 4
Ga K L\ s X u
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Bands and the “Band Gap Problem”

« Excitations are NOT well-predicted by
the “standard” LDA, GGA forms of DFT

Example of Germanium

Many-body
10 ~ T ey
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> xr N —
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M. Rohlfing, et al
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The “Band Gap Problem”

« Excitations are NOT well-predicted by
the “standard” LDA, GGA forms of DFT

The “Band Gap Problem”

Orbital dependent DFT is
more complicated but
gives improvements -
treat exchange better, e.g,
“Exact Exchange”

M. Staedele et al, PRL 79, 2089 (1997)

calc. band gaps [eV]

6
S #§ e=xact exchange o

zns
4 GaN g’

>
3 sic ¢’
2 Gans';’ﬁl'ns Geisa
. L4
6o 5-,‘,' metal

1 in LDA!

0 41 2 3 4 5
expt. band gaps [eV]
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Failures!

* All approximate functionals fail at some point!
* Most difficult cases

— Mott Insulators — often predicted to be metals
— Metal-insulator Transitions

— Strongly correlated magnetic systems

— Transiton metal oxides

— Hi-Tc materials
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Conclusions I

Density functional theory 1s by far the most widely
applied “ab intio” method used in for “real
materials” in physics, chemistry, materials science

Approximate forms have proved to be very
successful

BUT there are failures

No one knows a feasible approximation valid for
all problems — especially for cases with strong
electron-electron correlations
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Conclusions 11

* Exciting arenas for theoretical predictions
— Working together with Experiments
— Realistic simulations under real conditions
— Molecules and clusters in solvents, . . .
— Catalysis 1n real situations
— Nanoscience and Nanotechnology
— Biological problems

 Beware -- understand what you are doing!

— Limitations of present DFT functionals
— Use codes properly and carefully
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Conclusions 111

* Basis for further theoretical developments

— “GW” many-body calculations starting from DFT
wavefunctions

— Quantum Monte Carlo many-body calculations with trial
functions generated from from DFT wavefunctions

— Dynamical Mean Field Theory — done for models now
with information taken from DFT calculations

— Functional of Green’s functions and dynamical spectral
functions — generalizations of DFT

* Exciting time for developments in the
theory of interacting electrons
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