

IMPLEMENTATION OF THE PAW FORMALISM IN ABINIT

F. Jollet, M. Torrent, F. Bottin, G. Zérah

Commissariat à l'Energie Atomique Centre d'Etudes de Bruyères le Châtel France

The PAW method - summary

Wavefunction:

$$\left|\psi_{n}\right\rangle = \left|\widetilde{\psi}_{n}\right\rangle + \sum_{i} \left(\left|\phi_{i}\right\rangle - \left|\widetilde{\phi}_{i}\right\rangle\right) \left\langle\widetilde{p}_{i}\left|\widetilde{\psi}_{n}\right\rangle = \tau \left|\widetilde{\psi}_{n}\right\rangle$$

Operators:

$$\left\langle A\right\rangle =\sum_{n}f_{n}\left\langle \Psi_{n}\left|A\right|\Psi_{n}\right\rangle =\sum_{n}f_{n}\left\langle \widetilde{\Psi}_{n}\left|\tau^{*}A\tau\right|\widetilde{\Psi}_{n}\right\rangle$$

Density:

$$n(\mathbf{r}) = \tilde{n}(\mathbf{r}) + \sum_{R} \left(n_R^1(\mathbf{r}) - \tilde{n}_R^1(\mathbf{r}) \right) \qquad E = \tilde{E} + \sum_{R} \left(E_R^1 - \tilde{E}_R^1 \right)$$

$$E = \widetilde{E} + \sum_{R} \left(E_{R}^{1} - \widetilde{E}_{R}^{1} \right)$$

The PAW hamiltonian - summary

We have to solve:
$$\widetilde{H}\widetilde{\Psi}_n = \varepsilon_n S\widetilde{\Psi}_n$$

$$\widetilde{H} = \frac{dE}{d\widetilde{n}} = -\frac{1}{2}\Delta + \widetilde{v}_{eff} + \sum_{i,j} |\widetilde{p}_{i}\rangle D_{ij}\langle \widetilde{p}_{j}|$$

and

$$S = 1 + \sum_{R,ij} \left| \widetilde{p}_{i}^{R} \right\rangle \left(\left\langle \phi_{i}^{R} \right| \phi_{j}^{R} \right) - \left\langle \widetilde{\phi}_{i}^{R} \right| \widetilde{\phi}_{j}^{R} \right\rangle \left\langle \widetilde{p}_{j}^{R} \right|$$

where
$$\widetilde{v}_{eff} = v_{H} \left[\widetilde{n} + \widehat{n} + \widetilde{n}_{Zc} \right] + v_{xc} \left[\widetilde{n} + \widehat{n} + \widetilde{n}_{c} \right]$$

$$D_{i,j} = \sum_{L} \int \widetilde{v}_{eff}(\mathbf{r}) Q_{ij}^{L}(\mathbf{r}) d\mathbf{r}$$

$$+ \left\langle \phi_{i} \right| - \frac{\Delta}{2} + v_{H} \left[n^{1} + n_{Zc} \right] + v_{xc} \left[n^{1} + n_{c} \right] \phi_{j} \right\rangle$$

$$- \left\langle \widetilde{\phi}_{i} \right| - \frac{\Delta}{2} + v_{H} \left[\widetilde{n}^{1} + \widehat{n} + \widetilde{n}_{Zc} \right] + v_{xc} \left[\widetilde{n}^{1} + \widehat{n} + \widetilde{n}_{c} \right] \widetilde{\phi}_{j} \right\rangle$$

$$- \sum_{L} \int \widetilde{v}_{eff}^{1}(\mathbf{r}) \hat{Q}_{ij}^{L}(\mathbf{r}) d\mathbf{r}$$

Other formulation (implemented in ABINIT):

$$D_{ij} = D_{ij}^{0} + \sum_{kl} \rho_{kl} E_{ijkl} + D_{ij}^{xc} + \sum_{L} \int \tilde{v}_{eff}(\mathbf{r}) \hat{Q}_{ij}^{L}(\mathbf{r}) d\mathbf{r}$$
$$\rho_{i,j} = \sum_{n} f_{n} \langle \tilde{\Psi}_{n} \mid \tilde{p}_{j} \rangle \langle \tilde{p}_{i} \mid \tilde{\Psi}_{n} \rangle$$

Toward PAW in ABINIT...

- ➤ ABINIT has been first developped is the framework of NORM-CONSERVING pseudopotentials
- ➤ To take full benefit of PAW formalism it was necessary to use ULTRASOFT pseudopotentials.
 - ...implying the introduction of a « compensation charge » in the formalism.
- ➤ Implement PAW in ABINIT is long task:
 - The first stage was to introduce PAW formalism into « ground state » part of ABINIT.
 - This is fully available from ABINIT v4.6.x.
 - Translation of « Response function » part of ABINIT is in progress...

Modifications of *H* in ABINIT needed by PAW

From...

Norm conserving

$$\widetilde{H}\widetilde{\Psi}_i = \mathcal{E}_i\widetilde{\Psi}_i$$

$$\widetilde{H} = \frac{dE}{d\widetilde{n}} = -\frac{1}{2}\Delta + \widetilde{v}_{eff} + \sum_{i} |p_{i}\rangle D_{i}^{0}\langle p_{i}| \qquad \times \qquad \qquad \widetilde{H} = \frac{dE}{d\widetilde{n}} = -\frac{1}{2}\Delta + \widetilde{v}_{eff} + \sum_{i,j} |\widetilde{p}_{i}\rangle D_{ij}\langle \widetilde{p}_{j}|$$

is constant (KB energy)

i over quantum numbers *l,n*

...to...

PAW

$$\widetilde{H} = \frac{dE}{d\widetilde{n}} = -\frac{1}{2}\Delta + \widetilde{v}_{eff} + \sum_{i,j} |\widetilde{p}_i\rangle D_{ij}\langle \widetilde{p}_j| \quad \times$$

 $D_{i,j}$ is updated at each iteration

i over quantum numbers *l,n* and *m*

(*) Two generalized eigenvalue algorithm have been implemented:

- ✓ Generalized conjugate gradient by Payne, Teter, Allan... (cgwf.F90)
- ✓ Locally optimal block preconditionned conjugate gradient (lobpcgwf.F90) (possibility of parallelization over bands)

symbol points out similar quantities

Modifications of E in ABINIT needed by PAW

From...

Norm conserving

$$\begin{split} E^{total} &= E^{Ewald} + E^{K} + E^{local} \big[\widetilde{n} \big] \\ &+ E^{Hartree} \big[\widetilde{n} \big] + E^{xc} \big[\widetilde{n} + \widetilde{n}_{c} \big] \\ &+ E^{non-local} \end{split}$$

$$E^{Non-local} = \sum_{n,k} f_{nk} \sum_{R,ln} \langle \widetilde{\Psi}_{nk} \, \Big| \, \widetilde{p}_{ln}^{\,R} \, \Big\rangle E_{ln}^{\,KB} \, \Big\langle \widetilde{p}_{ln}^{\,R} \, \Big| \, \widetilde{\Psi}_{nk} \, \Big\rangle$$

...to...

PAW

$$E^{total} = E^{Ewald} + E^{K} + E^{local}[\tilde{n}]$$

$$+ E^{Hartree}[\tilde{n}] + E^{xc}[\tilde{n} + \tilde{n}_{c}]$$

$$+ E^{non-local}$$

$$+ E^{PAW}$$

$$Non-local energy term$$

$$\times E^{Non-local} = \sum_{n,k} f_{nk} \sum_{R,ln} \langle \tilde{\psi}_{nk} \mid \tilde{p}_{ln}^{R} \rangle E^{KB}_{ln} \langle \tilde{p}_{ln}^{R} \mid \tilde{\psi}_{nk} \rangle$$

$$= \sum_{R} ((E_{R}^{K1} + E_{R}^{H1} + E_{R}^{xc1}) - (\tilde{E}_{R}^{K1} + \tilde{E}_{R}^{H1} + \tilde{E}_{R}^{xc1}))$$

Modifications of *n* (*density*) in ABINIT needed by PAW

From...

Norm conserving

$$n^{total}(r) = \widetilde{n}(r) = \sum_{n,k} f_{nk} |\widetilde{\Psi}_{nk}|^2$$

...to...

PAW

Analogous to a non-local energy term

Ultrasoft pseudization implies:

$$\int n^{total}(r) \cdot dr = \int \widetilde{n}(r) \cdot dr + \int \widehat{n}(r) \cdot dr$$

Compensation charge

Norm-conserving vs ultrasoft PAW

Norm conserving

Wave functions expressed on plane waves

$$\tilde{\Psi}_{nk}$$

Total density

$$\tilde{n}(r)$$

Total energy

$$E^{total} = \tilde{E}$$

KB energies

$$E_{nl}^{KB}$$

One FFT grid

PAW

Wave functions expressed on plane waves (only part of total WF)

$$\widetilde{\Psi}_{nk}$$

Total density

$$\tilde{n}(r) + \hat{n}(r)$$

Total energy

$$E^{total} = \widetilde{E} + E^{PAW}$$

Psp strengths

$$D_{lmn,l'm'n'}^{R}$$

Two FFT grids (see later)
One radial grid for spheres

[...]

Conventions in spherical part formulation

• Partial waves and projectors: $\phi_{lmn}(\mathbf{r}) = \frac{\phi_{ln}(r)}{S_{lm}(\hat{r})}$

where $S_{lm}(\hat{r})$ are the **real** spherical harmonics

- Real Gaunt coefficients are: $RG_{l_im_i,l_jm_j}^{LM} = \int_{\Omega} S_{l_im_i}(\hat{r}) S_{l_jm_j}(\hat{r}) d\Omega$
- Important relations: $e^{i\mathbf{k}\cdot\mathbf{r}} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} i^{l} S_{lm}(\hat{r}) S_{lm}(\hat{k}) j_{l}(kr)$ $\frac{1}{|\mathbf{r} \mathbf{r}'|} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{4\pi}{2l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} S_{lm}(\hat{r}) S_{lm}(\hat{r}')$

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{4\pi}{2l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} S_{lm}(\hat{r}) S_{lm}(\hat{r}')$$

Example of formal calculation

$$\langle \phi_i | v_H(n^1) | \phi_j \rangle = \iint_R \phi_i^*(\mathbf{r}) \frac{n^1(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \phi_j(\mathbf{r}') d\mathbf{r} d\mathbf{r}'$$

$$= \iint_{R} \frac{\phi_{i}(r)}{r} S_{l_{i}m_{i}}(\hat{r}) \left(\sum_{i'j'} \rho_{i'j'} \frac{\phi_{i'}(r')}{r'} S_{l_{i'}m_{i'}}(\hat{r}') \frac{\phi_{j'}(r')}{r'} S_{l_{j'}m_{j'}}(\hat{r}') \right) \left(\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{4\pi}{2l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} S_{lm}(\hat{r}) S_{lm}(\hat{r}') \right) \frac{\phi_{j}(r)}{r} S_{l_{j}m_{j}}(\hat{r}) r^{2} dr d\Omega r'^{2} dr' d\Omega'$$

$$= \sum_{l} \sum_{m} \sum_{i'j'} \rho_{i'j'} RG^{lm}_{l_{i}m_{i},l_{j}m_{j}} RG^{lm}_{l_{i'}m_{i'},l_{j'}m_{j'}} V^{l}_{l_{i},l_{j},l_{i'},l_{j'}}$$

with
$$V_{l_i,l_j,l_{i'},l_{j'}}^l = \int_0^R \int_0^R \frac{4\pi}{2l+1} \phi_{l_i}(r) \phi_{l_j}(r) \phi_{l_{j'}}(r') \phi_{l_{j'}}(r') \frac{r_<^l}{r_>^{l+1}} dr dr'$$

PAW in ABINIT – overview

Efficiency

In ABINIT we choose to...

- © Have good ultrasoft PAW atomic data (downloadable on web site)
- Store as much frozen atomic data as possible (see pawinit)
- Use several adapted radial grids (see psp7in)
- © Exploit symetries to compute only the non-zero radial moments of the densities (see pawdens)
- © Develop the radial XC potentials in moments and compute only the first ones (see pawxcm)
- © Exploit symetries of the system to symetrize ρ_{ii} (see symrhoij)
- \odot Mix effectively the spherical part of the density (mix ρ_{ij})
- © Have efficient algorithms to solve generalized eigenproblem

Accuracy

In ABINIT you can...

- © Have good ultrasoft PAW atomic data (downloadable on web site)
- © Adjust sharpness of grids in real space (spheres) or reciprocal space magridag
- © Choose to compute XC potential exactly (LDA only) or with a development over few moments $p_{awxcdev}$
- Use two adjustable Fourier grids:

ecut, ecutdg nfft, nfftdg

- a « coarse » grid for wave functions development
- a « fine » grid (double grid) for densities description inside spheres
- © Choose order of development of densities in spherical harmonics

pawlcutd

② And also use all adjustable convergence parameters (same as in norm-conserving case)...

How does a PAW calculation work in ABINIT?

At first order

Mandatory

Only change all the pseudopotential files

At second order

Always

Test the convergency of the fine grid (ecutdg or ngfftdg)

At third order

Rarely

- (De)activate second order expansion of XC potentials (pawxcdev) and eventually adjust sharpness of spherical grids (pawntheta, pawnphi)
- Cut or not spherical harmonics expansion (lcutd)
- Adjust sharpness of grid used to express atomic data in reciprocal space (pawmqgrid)
- Use only main part of ρ_{ij} in mixing scheme of SC cycle (pawlmix)
- ... and other adjustable parameters (see PAW chapter of input variables manual)

Initial storage of frozen atomic data (pawinit)

Initialization of some starting values for several arrays used by PAW calculation

- 1-Initialize data related to angular mesh (Gaunt coefficients, ...)
- 2-Tabulate normalized shape function g(r) (for compensation charge)
- 3-Compute:

$$q_{ij}^{lm} = \int_{R} \left[\phi_{i}^{*}(\mathbf{r}) \phi_{j}(\mathbf{r}) - \widetilde{\phi}_{i}^{*}(\mathbf{r}) \widetilde{\phi}_{j}(\mathbf{r}) \right] r^{l} S_{lm}(\hat{r}) d\mathbf{r} = R G_{l_{i}m_{i}, l_{j}m_{j}}^{lm} \int_{0}^{R} \left(\phi_{i}(r) \phi_{j}(r) - \widetilde{\phi}_{i}(r) \widetilde{\phi}_{j}(r) \right) r^{l} dr$$

$$S_{ij} = \sqrt{4\pi} q_{ij}^{00}$$

 $E_{ij,kl}$ Involved in computation of Hartree potential inside spheres

5-Compute Ex-correlation energy for the core density

<u>></u>

Computation of data inside PAW spheres (pawsphpot)

> Calculation of spherical densities (pawdens)

$$n(r, \theta, \varphi) = \sum_{LM} n_{LM}(r) S_{LM}(\theta, \varphi)$$

Compute: $n_{LM}^1(r)$, $\tilde{n}_{LM}^1(r)$, $\hat{n}_{LM}(r)$

- Possibility to compute $n(r, \theta, \phi)$ or $n_{LM}(r)$
- Possibility to compute all LM moments or only the first ones (having the main contribution)

> Calculation of the spherical potentials (pawxc & pawxcm)

$$v_{xc}(r,\theta,\varphi) = \sum_{LM} v_{LM}^{xc}(r) S_{LM}(\theta,\varphi) = v_{xc} [n_0(\vec{r})] + [n(\vec{r}) - n_0(\vec{r})] \frac{dv_{xc}}{dn} [n_0] + \frac{[n(\vec{r}) - n_0(\vec{r})]^2}{2} \frac{d^2v_{xc}}{dn^2} [n_0]$$

Direct computation on spherical grid (LDA only)

OR

Development in moments stopped at first moment

Accurate CPU expensive

Approximated

The non local operator (nonlop)

The nonlocal operator has the form $v_{NL} = \sum_{R,lmn,l'm'n'} \left| \widetilde{p}_{lmn}^{R} \right| \mathbf{O}_{lmn,l'm'n'}^{R} \left| \widetilde{p}_{l'm'n'}^{R} \right|$

$$v_{NL}(\mathbf{G}, \mathbf{G}') = \sum_{\mathbf{R}, lmn, l'm'n'} \left\langle \mathbf{G} \middle| \mathbf{\tilde{p}}_{lmn}^{\mathbf{R}} \right\rangle \mathbf{O}_{lmn, l'm'n'}^{\mathbf{R}} \left\langle \mathbf{\tilde{p}}_{l'm'n'}^{\mathbf{R}} \middle| \mathbf{G}' \right\rangle$$

$$= (4\pi)^{2} \sum_{\mathbf{R}} e^{i\mathbf{R}(\mathbf{G}'-\mathbf{G})} \sum_{lmn, l'm'n'} \left[H_{lmn}^{\mathbf{R}}(\mathbf{G}) \middle| \mathbf{O}_{lmn, l'm'n'}^{\mathbf{R}} \middle| H_{l'm'n'}^{\mathbf{R}}(\mathbf{G}') \right]^{*}$$

$$H_{lmn}^{\mathbf{R}}(\mathbf{G}) = (-i)^{l} S_{lm} \left(\hat{\mathbf{G}} \right) \int_{0}^{\mathbf{R}} j_{l}(\mathbf{G}r) \mathbf{\tilde{p}}_{ln}^{\mathbf{R}}(r) r dr$$

As mentionned by symbols \boxtimes , several quantities have this form:

- If $O^R_{lmn,l'm'n'} = D^R_{ij}$, we get the non-local part of Hamiltonian
- If $O^R_{lmn,l'm'n'} = S^R_{ij}$, we get operator **S**
- If $O^R_{lmn,l'm'n'} = 1$, we get ρ^R_{ij}

All these quantities are computed in the same routine (nonlop)

How to retrieve norm-conserving expression

$$v_{NL}(G,G') = (4\pi)^{2} \sum_{R} e^{iR(G'-G)} \sum_{lmn} H_{lmn}^{R}(G) E_{ln}^{KB} \left[H_{lmn}^{R}(G') \right]^{*}$$

$$= (4\pi)^{2} \sum_{R} e^{iR(G'-G)} \sum_{ln} \left[\left(-i \right)_{0}^{l} \int_{0}^{R} j_{l}(Gr) \tilde{p}_{ln}^{R}(r) r dr \right] E_{ln}^{KB} \left[\left(-i \right)_{0}^{l} \int_{0}^{R} j_{l'}(G'r) \tilde{p}_{l'n'}^{R}(r) r dr \right]^{*} \sum_{m} S_{lm} \left(\hat{G} \right) S_{lm} \left(\hat{G}' \right)$$

$$= (4\pi)^{2} \sum_{R} e^{iR(G'-G)} \sum_{l,n} f_{nl}^{R}(G) \cdot E_{ln}^{KB} \cdot f_{nl}^{R}(G') \cdot \left[\frac{2l+1}{4\pi} P_{l}(\cos \theta_{G,G'}) \right]^{*}$$

Forces

Forces in PAW have been implemented as sum of the following terms:

PAW in ABINIT 30/08/2005

17

Stress tensor

Stresses in PAW have been implemented as sum of the following terms:

$$\sigma_{\alpha\beta} = \frac{1}{\Omega} \frac{\partial E}{\partial \varepsilon_{\alpha\beta}} = \underbrace{kinstr + ewstr + lpstr(\tilde{n} + \hat{n}) + harstr(\tilde{n} + \hat{n}) + strxc(\tilde{n} + \hat{n} + \tilde{n}_c) + strsii}_{\text{Norm} - \text{conserving like terms}} + \sigma_1 + \sigma_2 + \sigma_3 + \sigma_4$$

Mixing during electronic iterations

Mixing is available either on \tilde{v}_{eff} or on $\tilde{n} + \hat{n}$. In PAW, mixing on densities seems to be more suitable.

The spherical part (ρ_{ij} quantities) has also to mixed! Their mixing scheme is adjusted on the density (or potential) mixing scheme.

	Mixing on potential	Mixing on densities
Simple mixing	iscf=2	iscf=12
Anderson mixing	iscf=3	iscf=13
Anderson mixing (order 2)	iscf=4	iscf=14
Conjugate-gradient mixing	iscf=5	Not yet available
Pulay mixing	iscf=7	iscf=17

Exemple, with a simple mixing:
$$n_{n+1}^{mix}(r) = n_n^{in}(r) + \alpha \cdot \underbrace{\left(n_n^{out}(r) - n_n^{in}(r)\right)^{PC}}_{resid_n^{PC}(r)}$$

$$\left[\rho_{ij}\right]_{n+1}^{mix} = \left[\rho_{ij}\right]_{n}^{in} + \alpha \cdot \underbrace{\left[\left[\rho_{ij}\right]_{n}^{out} - \left[\rho_{ij}\right]_{n}^{in}\right]_{n}^{PC}}_{resid\left[\rho_{ij}\right]_{n}^{PC}}$$

PC means « preconditionned »

The fine regular grid

- A coarse grid is used to obtain wavefunctions $\widetilde{\Psi}_n$
- We need \hat{n} on the regular and on the radial grid
- For accuracy, a fine grid is used to compute $\tilde{v}_{eff} = v_H [\tilde{n} + \hat{n} + \tilde{n}_{Zc}] + v_{xc} [\tilde{n} + \hat{n} + \tilde{n}_c]$

If only the « coarse »
FFT grid is used, not enough points are in PAW spheres

See variable pawecutdg

« Double FFT » technique is used to transfer densities (potentials) between grids:

$$\widetilde{n}_{coarse}(\vec{r}) \xrightarrow{FFT} \widetilde{n}_{coarse}(\vec{G}) \xrightarrow{FFT} \widetilde{n}_{fine}(\vec{G}) \xrightarrow{FFT} \widetilde{n}_{fine}(\vec{r})$$

Conclusion

- What is done in ABINIT v4.6.x:
 - Calculation of the total energy, forces and stresses
 - Atomic data generators
- What is to be done:
 - Calculation of linear response
 - Spin orbit coupling
 - Detailed Latex Documentation
- What is to be improved
 - Introduce PAW formalism in the whole GS code (some restrictions still remain)
 - Parallelize (on atoms ?)