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The Kohn-Sham problem

® Minimize El{y:}| = wai[%]vg¢fdgr+ /%onn(r)dgr—l—
energy 1?5 M

functional: ks - Erd’r’ + Excln(r)]

+Vien({Rr})

® Or solve Kohn-Sham equations:

[%VE + Vion(r) + Vu(r) + Vxc(r)] ¢ (r) = eap:(r)

® Note that self-consistent solution necessary, as H depends on
solution: {v,} — nir) — H

® Convention: e =/ = m. =1



Numerical Solutions:
Factors to keep in mind

Want: Accurate but cheap...
Memory requirements should be small.

CPU time should be short.

Iterative solutions:

- Number of iterations should be small (fast convergence).
- Each iteration should be fast.

For parallel architectures: good scalability.

Recall (from yesterday): pseudopotentials were introduced to speed
the calculation, but need to do more!



Warnings / Disclaimers

For simplicity / ease of presentation, will make following assumptions:

® Try to focus on general concepts rather than mathematical
formulae.

® Not exhaustive, there exist many schemes!
® Wavefunctions expanded in a plane wave basis of size N,

W (r) = Zq Ciq X %exp(iq ' T).

(Umesh Waghmare will discuss.)
® AssumeV, =V,  =V,,
Drop spin indices (will be present in spin-polarized calculations).

® Drop occupation factors (will be present for metals where there are
partially occupied states).



Self-consistent solution: one way

Vion known/constructed
!

Initial guess n(r)
!
Generate Calculate Vy[n] & Vyc[n]

new !
n(r) V()= Vion(r) + Vg (r) + Vxc (r)
!
Hyir) = [-12V? + V()] w(r) = & w(r)

'

Calculate new n(r) = I yi(r)|?

\ 4

Problem &
Diagonalizing

Problem @
Mixing

No

Self-consistent?

Problem solved! Can now calculate energy, forces, etc.




Hamiltonian 1n plane wave basis

Expand wavefunction in plane wave basis:

Pi(r) = Xgcixta X Fsexplitk + G) - r].

Eigenvalue equation is now:

ZG" Hk+G,k+G*’Ci,k+G*’ = CiCLk+G

Matrix elements are:

Lk + G?6gqr + Viea(k + G,k + G) + V(G — G') + Vxc(G — G)

Note that in reciprocal space, kinetic energy term is diagonal.
Ionic potential given by:

Vien(G) = 2., 8a(G)va(G);  Sa(G) = > ;exp(iG - Ry)




Exact diagonalization
1S expensive!

Expand in a basis of plane waves.

Have to diagonalize (find eigenvalues & eigenfunctions of) Hy ;g 11a!
Typically, N,,, > 100 x humber of atoms in unit cell.

Expensive to store H matrix: V., elements to be stored.

Expensive (CPU time) to diagonalize matrix exactly,
~ N,,’ operations required.

Note, V., >> N, = number of bands required = N,/2 or a little
more (for metals).

So ok to determine just lowest few eigenvalues.



Initial Choice of n(r)

Various possible choices, e.q.,:

® Converged n(r) from a closely related calculation
(e.g., one where ionic positions slightly different).

® Superpositions of atomic densities.

® Approximate n(r) , e.g., from solving problem in a smaller/different
basis.

® Random numbers.



Fast, new(ish) methods for 1terative
solution

N

/\

. : Solve Kohn-Sham egns. by
Minimize energy functional

Iterative Diagonalization + Mixing

Molecular Dynamics

Direct

Davidson

(Car-Parrinello)

Minimization

_———\

Steepest
Descent

Conjugate
Gradient

Conjugate
Gradient

DIIS

Linear

!

Broyden

DIIS

(and lots of ‘etc.’s scattered plentifully about!)

Modified
Broyden




Minimization

Relevant to many parts of calculation:

- Minimizing energy functional

- Diagonalizing Hamiltonian

- Achieving self-consistency

- Optimizing ionic positions

Consider a function F(x) of N variables x = x, x,, ..., xy

Assume the gradient VF(x) is also known.
VF(x) points in direction of maximum increase of F(x) .

Want to find x, s.t. F(x) has its minimum value at x,, i.e., VF(x,)=0.

Will find iteratively, through a sequence of points x” in the
N-dimensional space that are stepping stones to finding x,,.

Convention: subscripts «» coordinates, superscripts « iterations.



Steepest Descent

Keep going downhill in direction opposite local gradient.

Could try taking lots of little downhill steps:
X't = x" _ ¢ VF(X”) =X" + ag"
- How to choose «?

(too small: slow convergence, too large: overshoot)

Always, ¢" perpendicular to g+,

Better: Once direction ¢” identified, do line minimization (search
along ¢” for minimum or search for place where gradient is

perpendicular to line), i.e. find optimal .

Convergence can be slow
(may not reach minimum!)

Problem: when moving along new direction,

lose some minimization along old one(s).



Quadratic Forms

® Consider a function of the form:

F{z;}) =F(x)=3x-H.x

® The Hessian is:

H.,;j = @EF(x)/@:ﬂt@:ﬂj

® The (negative of) Gradient is then

g=—-VF(z)=—-H-x

(gives curvature)

® Can approximate functions by quadratic form near minimum.

Note: for notational convenience, have dropped transpose signs...
x is an (Nx1) column vector, H is an (NxN) matrix, F(x) is a scalar.



Quadratic Forms & Linear Equations

® Useful property:
Minimizing the quadratic form:
%x-H-x—b-x—i—c

IS equivalent to solving the linear system of equations:

H-x=Db

® Define: Error ¢" = x" —x,
® Define: Residual "= Hx" - Hx,
® Algorithms can aim to minimize (norm of) error / residual



Conjugate Directions

® Want to find non-interfering directions s.t. minimization along one
not spoiled by subsequent minimization along another.

® Conjugate directions are H-orthogonal:

d"-H.d™ =0, for n#m

® Can avoid having to know/store Hessian, instead
- get new conjugate direction by:

dn.—l—l — gn—i-]. _|_’_Yn.—|—1dn.

where

n+l1l n+1

,_Yn.—l—l — & ﬁ. - (2

kel SET
n- J._gn).gn +1
ghg"

Fletcher-Reeves Polak-Ribiére



Conjugate Gradient Minimization

Very first step: do steepest descent along gradient.
Find conjugate direction.

Do line minimization along conjugate direction.

Find new conjugate direction; repeat until converged.

If F(x) can be written as a quadratic form, each new direction is
conjugate to ALL previous directions, and minimum in N-d space

found in at most N steps.

&




Preconditioning

Preconditioning = extra step in a numerical method, designed to
accelerate convergence.

Let’s try to motivate geometrically in this context...
Curvature given by Hessian.
Convergence fastest if curvature ~ uniform in all directions.

- For completely spherical function,
converge in just 1 step.

- Want Hessian to look close to diagonal
matrix with all elements same.

- Matrix egs.: all eigenvalues clustered.

Let y = P-!x; so nhow minimize ¥z y(PHP)y

® Pland multiplications easy (trivial) if P diagonal.



DIIS

® "Direct inversion of iterative subspace”.

® Find a new trial vector x”*/ from a linear combination of all previous
trial vectors x',... x:

Tre
i
=26
i=1

® Ideally, new solution would be the right minimum:

e

i
2 %=
i=1

® Define error e=x-x,. (In practice, would have to estimate).



DIIS [contd.]

Substituting, we would like to have:

Tre Tre Tre

Zci( —|—ei)=Zci —|—Zciei=

i—1 i—1 i—1

Can enforce this if we set:

Tre

Zcizl and iciei:[}
i=1

i—1

Done by minimizing (> " c'e’| >~ e’y subject to 1st constraint.

i=1 j=1

Involves solving a (m+1)x(m+1) matrix equation.
Need some error estimate, e.g. (preconditioned) gradient...



Quasi-Newton-Raphson methods

Want to minimize F({z:}) =F(x)=4x-H-x
Gradients given by ¢g= _VF(z)= —-H-x
So 0=VF(xy) =VF({)+H- (xg— x)

Can guess that minimum will be at:
x'"l=x'"+H . VF(x)
But we may not know H! or it might be hard to compute.

Build up estimate for H! with successive updates, using information
from (many) previous iteration(s) ... various prescriptions, e.g.,
BFGS (Broyden-Fletcher-Goldfarb-Shanno)

Related ideas used in density mixing....



Which technique?

Depends on:

® Number of variables (matrix size)

(determines, e.g., whether one can afford to save information from
many iterations)

® Shape of surface F(x)
- how close to quadratic form
- how isotropic
- how sparse H is
- extent to which H is diagonally dominant.



Kohn-Sham as
minimization problem

x <> wor{c;} (plane wave coefficients)

F < E (Kohn-Sham energy functional) , subject to
orthonormality constraints:

<¢b|¢§)> — 5b,b'

—VF(x) <> Hy + terms from orthonormality constraints
Band b + normalization constraint — - VF(x) <> Hq, — e31)s
Usually, orthogonalize in separate steps (Gram-Schmidt, etc.)

Note, for self-consistency, H updated during minimization steps.



Car-Parrinello Method

Molecular dynamics way of simultaneously doing ionic dynamics
and solving electronic problem.

Regard each c; as coordinate of a classical particle.
Fictitious dynamics of ¢/s.
Solve classical equations of motion to update ¢/'s.

Solve the electronic problem by quenched molecular dynamics

(e.qg., simulated annealing) — give some K.E. then cool, should end
up at minimum.

Need very small time steps to solve electronic problem well.

May converge to linear combination of the Kohn-Sham eigenstates,
need to do a “subspace diagonalization” to get the correct ones.

R. Car and M. Parrinello, Phys. Rev. Lett. 55 2471 (1985).



Direct Minimization:
Conjugate Gradient

Either do one band at a time or can do
all bands simultaneously.

» Initial guess {c,}'

—o Calculate density

» Calculate potential V,(r)

e Calculate gradient

» If gradient small, stop

» Calculate (preconditioned)
conjugate direction

» Calculate new {c,}

— e Orthogonalize {c,}
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FIG. 18. Error in the total energy of an #-atom silicon supercell
with a 32-Ry kinetic-energy cutoff vs iteration number for
indirect-minimization (dashed line) and direct-minimization
(solid line) methods. MNote that the curve labeled “molecular
dynamics™ involves a first-order egquation of motion, and the
number of iterations associated with this curve has been divided

by five to allow comparison at the same level of computational
effort as discussed in the text.

Review: Payne, Teter, Allan, Arias & Joannopoulos, Rev. Mod. Phys. 64 1045 (1992).
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[terative Diagonalizers -1
Krylov Subspaces

Recall in conjugate gradient, the set of search directions {d’}, i=1,n
was increased at each step by the addition of a new direction d*!
which is obtained from H.x"

Krylov subspace of a matrix A: ( Ax, A’%x, Ax, ...)
Way of increasing the space in which one searches for a solution.

Note: Unless x is an eigenvector of A, Ax will point in a new
direction.



Iterative Diagonalizers -2
Krylov Subspaces (contd.)

Found on “Google Answers”...

Qtfestion: Why is the Krylov subspace the natural space to look for a
solution?

Answer: Your Question about the relationship between Krylov subspaces
and iterative solution of linear systems brings to mind an old story:

One dark evening a man sees a friend, busily searching
for something under a street lamp. When he asks how
he can help, he's told that a watch is missing, and for
several minutes both of them diligently look for it.
Finally the man asks his friend if he's sure this is where
the watch was lost. "Oh no," the friend replies, "I left it
in the park, but the light is much better here."

Certainly it is not obvious that a Krylov subspace would
have the solution of a linear system, or even a good
estimated solution. However it is easy to search there!
And under some conditions the search turns out to be
unreasonably successful.




Iterative Diagonalizers -3

® Differences in approaches :
- How much of the Krylov subspace is used explicitly at each

iteration.
- Way in which previous iterates are combined to give new one.

- Whether solution is band-by-band or all bands (for Kohn-Sham
problem)
® Some popular iterative diagonalizers:
- Lanczos
- Conjugate Gradient
- Davidson



Sparseness & Use of FFT’s

Iterative methods: repeatedly need to calculate Hy.

If the matrix H is sparse (lots of zero elements), this is fast.
H=T+V.

Kinetic energy diagonal in G,G’, so Ty fast in reciprocal space.
But potential energy is diagonal in r,r’ so Vi fast in real space.
Also calculating density n(r) fast in real space.

Use Fast Fourier Transforms (FFTs) to go back and forth between
real space and reciprocal space.

Cost of FFT ~ Ny, In (Npy)



Mixing

Iterations n of self-consistent cycle:
Successive approximations to density: n;, (n) — n,,(n) — n, (n+1).
n,,(n) fed directly as . (n+1) ?? No, usually doesn’t converge.

Need to mix, take some combination of input and output densities (may
include information from several previous iterations).

Goal is to achieve self consistency (n,,, =n,,) in as few iterations as
possible.

Want to solve f(x)=x — Minimize norm of R[x] =f(x) - x
Simplest prescription = linear mixing:
nin(n+1) = nout(n) + (1-(1) nln(n)

There exist more sophisticated prescriptions (Broyden mixing,
modified Broyden mixing of various kinds...) based on QNR methods.

Some people mix potentials instead of densities.



Total Energy

Very useful quantity!

Can use to get structures, heats of formation, adsorption energies,
diffusion barriers, activation energies, elastic moduli, vibrational
frequencies,...

Not just sum of eigenvalues because of double counting of electron-
electron terms (Hartree, Exchange, Correlation).

Also need to add ion-ion interaction (Ewald sums).

Cancellation of divergences at G=0



Geometry Optimization-1

® Simplest case: only have to vary one degree of freedom
- e.g., structure of diatomic molecule
- e.g., lattice constant of a cubic (SC, BCC, FCC) crystal
® (an just look for minimum in binding curve (total energy vs. a)

@ ecut = 60 Ry
@ ecut = 50 Ry
Murnaghan fit
Murnaghan fit

-36.660

-36.670

E,. [Ha]

-36.680

-3ge00 L
69 71 73 75 77 79 81 83 85
ala.u.]



Forces

Need for geometry optimization and molecular dynamics.
Could get as finite differences of total energy - too expensive!

Use force (Hellmann-Feynman) theorem:
- Want to calculate the force on ion I:

F;= —ﬁ(‘PIHI‘IO

- Get three terms:

Fi = —(V|5-10) — (5o | H|W) — (V|H|zz>)
I I I

Wher [¥) is an eigenstate, H|W¥) = E|¥)

-Substitute this...



Forces (contd.)

The force is now given by

OH oW oW
F; = —(V|—|¥V) - E(—|¥) — E(¥|=)
IR, dR,; dR,;
OH o
= (V| —|¥) - E )
dR, d

Note that we can now calculate the force from a calculation at ONE
configuration alone — huge savings in time.

If the basis depends upon ionic positions (nhot true for plane waves),
would have extra terms = Pulay forces.

If |¥) is not an exact eigenstate (electronic calculation not well
converged) may get big errors in forces calculated using this
prescription.



Stress

Strain: Ta — (dag + €ap)Ts

Stress: Oop = —

Stress Theorem (Nielsen & Martin, 1985) —
as for forces, can calculate at a single configuration.

What if the (specifying unit cell) are not
optimal?

- Forces on atoms may = 0 (e.g., an FCC crystal with wrong lattice
constant)

- Stress will not be zero, however.
< 0 — cell would like to expand.
> 0 — cell would like to contract.



Geometry Optimization-2

® Conditions for equilibrium:
- Forces on all atoms = 0.
- Stress = externally applied stress
® Variables whose values to be optimized:
- nuclear coordinates {R,}
- unit cell vectors {a,, a,, a5} (6 out of 9 are independent variables)
® Now optimize using any routine of choice.
® Again, various algorithms; one popular one = BFGS.

Symmetries could change during geometry optimization (may or
é% may not be permitted), check k points
Number of plane waves may change discontinuously when cell
size changed.
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