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Atomic wavefunctions:
- what do they look  like?
- how to obtain?

Pseudopotentials:
- what are they?
- why use them?
- why do they work (or not?)
- how to obtain?
- how to test & use?



Electrons in Atoms
• Electrons in atoms are arranged in shells.

• Quantum numbers: 
n [shells], l [subshells], ml [orbitals], ms

• Rare gas atoms have certain
complete subshells (inert configurations):
He: 1s2, Ne: [He], 2s2, 2p6, Ar: [Ne] 3s2, 3p6, 
Kr: [Ar], 3d10, 4s2,4p6, Xe: [Kr], 4d10, 5s2, 5p6, 
Rn: [Xe], 4f14, 5d10, 6s2,6p6

• Can divide electrons in any atom into core and valence.

• This division is not always clear-cut, but usually
core = rare gas configuration [+ filled d/f subshells]

Schematic pic of Cl atom



Electrons in molecules/solids
• Chemical bonds between atoms are formed by sharing / 

transferring electrons.

• Only the valence electrons participate in bonding.

• Wavefunctions of valence electrons can change 
significantly once the bond is formed.

• Wavefunctions of core electrons change only slightly 
when the bond is formed.

• The Pseudopotential Approximation: view matter as a 
sea of valence electrons moving in a background 
composed of rigid ions [ion = nucleus + core electrons].



Obtaining atomic wavefunctions
• Hydrogen(ic) atoms: solve exactly (analytically).

Recall:

• When there are many interacting electrons: have to 
solve numerically.
- Schrödinger equation / Dirac equation
- Hartree-Fock equations
- Kohn-Sham equations
- Though external (Coulomb) potential is spherically 

symmetric, effective potential may / may not be so,
but usually solve in spherical approximation.

• All-electron calculations: both core and valence e-s 
included (whether for atom or solid).



Orthogonality
Recall:
• Eigenfunctions of a Hermitian operator form a complete 

orthonormal set, and the eigenvalues are real.

• For atomic wavefunctions specified by n, l:

- Separate into radial part and angular part.

- Wavefunctions with same n, different l are orthogonal
due to the nature of the angular part of the wavefunction.

- Wavefunctions with different n, same l are orthogonal
due to the nature of the radial part of the wavefunction.



Example: wavefunctions for Ag atom

• Core wavefunctions sharply 
peaked near nucleus (so high 
Fourier components).

• Valence wavefunctions peaked 
far away from nucleus, lots of 
wiggles near nucleus (so high 
Fourier components).

• Not clear whether 4d should be 
considered core / valence.

• In a solid, wavefunction may also 
have some 5p, 5d character.

• 1s, 2p, 3p, 4f,… are nodeless.

• Ground state configuration: [Kr], 4d10, 5s1, 5p0, 5d0

φ l
(r

)



The Pseudopotential  Approximation
• Frozen core: remove core-electron degrees of freedom.
• Valence electrons see a weaker potential than the full 

Coulomb potential, replaces electron-nuclear potential.
• Tailor this pseudopotential so that wavefunctions behave

‘properly’ in region of interest, yet computationally cheap.

(Numerical) Advantages when solving Kohn-Sham eqns.:
• Have to solve  for fewer eigenvalues.
• When solving using a basis (especially plane waves), 

basis size drastically reduced (smaller matrices to 
diagonalize).

• No Coulomb singularity (cusp in wavefunction) at origin.
Disadvantages:
• Can lose accuracy 



An analogy!
• “Dummy cops” used by many law-enforcement agencies!

• Stick a mannequin in uniform  by the highway … if it looks 
like a cop, it works like a cop!

• Don’t care about internal structure as long as it works 
right!

• But cheaper!!

• Obviously it can’t reproduce all the
functions of a real cop, but should
be convincing enough to produce
desired results….



What does a pseudopotential look like?

Example: (will see later how to obtain….) for Mo:

Hamann, Schluter & Chiang, 1979.

• Weaker than full
Coulomb potential

• No singularity at r=0

• Different
pseudopotential 
for each l (example
of semilocal
pseudopotential)

• Will be Vext
(replacing
nuclear potential)



Why do pseudopotentials work at all?
• Core e-s are ~ frozen, don’t participate in bonding.

• Energy correction (due to non-frozen core) is second order
in ∆ρ = ρtrue – ρfrozen-core.

• Screening by core e-s  � valence e-s see weaker potential.

• Cancellation of kinetic energy and potential energy in core 
regions.

• Pseudopotentials are constructed so that they have the 
same scattering properties as true potential.



Is the core really frozen?
• Example: see how density for P changes when electronic 

configuration changed:

• All-electron calc.: changes in ρ mostly outside core region.
• Reproduced well by a pseudopotential.

• Pseudopotential won’t work well in cases where polarizable 
semicore states contribute to bonding.

Goedecker & Maschke,1992



Wish List for a Good Pseudopotential

For accuracy:
• Should reproduce scattering properties

of true potential.
• Transferable: Nice to have one pseudo-

potential per element, to use in variety 
of chemical environments.

• Norm conserving? (will explain)
• Ab initio? (no fitting to experimental data)

For (computational) cheapness:
• Smooth / Soft: Need smaller basis set  (esp. plane waves)
• ‘Separable’? (will explain) but ‘Ghost free’ (should not 

introduce spurious states when making separable!)



Scattering

Recall (from a quantum mechanics course?):
• Scattering properties of a potential described by phase 

shift ηl .
• Related to logarithmic derivatives:

• Weaker potentials will have fewer bound states.
• In the pseudopotential approximation: want to make the 

potential weak enough that the valence electron is the 
lowest bound state (with that l).



Generating an ab initio pseudopotential
(Note: general outline, schemes differ!)

(contd.)

1) Pick electronic configuration for atom (reference config.)
[e.g., may want  to  promote some electrons to 
excited states]

2) Perform all-electron calculation �

where



Generating an ab initio pseudopotential

(contd.)

3) Divide electrons into core and valence.

4) Pick a core radius rc

- rc too small � hard pseudopotential
- rc too large � transferability poor
- rc can be different for each l
- rc should be larger than r for outer-
most node of radial wavefunction

- usually pick rc slightly inside position of peak in radial
wavefunction.

rc



Generating an ab initio pseudopotential

5) Construct pseudowavefunction (one l at a time):
- Pseudowavefunction & all-electron wavefunction are

identical outside the cut-off radius rc:

(contd.)



Generating an ab initio pseudopotential

5) Construct pseudowavefunction (one l at a time):
- Pseudowavefunction & all-electron wavefunction are

identical outside the cut-off radius rc:

(contd.)



Generating an ab initio pseudopotential

5) Construct pseudowavefunction (one l at a time):
- Pseudowavefunction & all-electron wavefunction are

identical outside the cut-off radius rc:

- Inside rc , 
- Lots of freedom for choice of f (choose for right log
derivatives, softness, norm conservation, etc.)

(contd.)

(r) = f(r)



Generating an ab initio pseudopotential

6) Invert Schrödinger equation:

- Can always do (if pseudowavefunction is nodeless)
- Will get correct (all-electron) eigenvalue.

- “Screened” pseudopotential
(includes Hartree + XC potentials)

7) “Unscreen”, i.e., remove Hartree and XC contributions.

(contd.)



Norm Conservation

• We always have the following conditions:

• In addition, if we impose norm conservation:

then it will automatically follow*:

i.e., if energy is shifted slightly from that of reference 
eigenvalue, log derivatives ~ unchanged �
improved transferability!
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A Pseudopotential Timeline
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BHS pseudopotentials
• Bachelet, Hamann, Schlüter, PRB 26, 4199 (1982).

• “Pseudopotentials that work: from H to Pu”

• Ab initio, norm conserving, so good transferability.

• Semilocal Vl(r) [local in radial coordinates, nonlocal in 
angular coordinates]

• Parametrized form: chosen to give nice analytical 
expressions with many basis sets, 9 parameters, 
tabulated for all elements.

• Non-linear fitting procedure, caution needed!

• Fairly hard pseudopotentials since smoothness not built 
in explicitly, frequently need high cut-off.



Kleinman-Bylander Transformation
• Nonlocal: V(r,r’) [ nonlocal in r & Ω]

• Semilocal Vl(r,r’)=Vl(r)δ(r-r’)

• Local V(r,r’)=Vloc(r)δ(r-r’)δ(Ω,Ω’) [can always pull out local piece, 
speeds computation]

• Separable: Want Vl(r,r’) = Fl*(r)flFl(r’) [faster to compute]

• Kleinman & Bylander (PRL 48, 1425, 1982): Way to map semilocal
potential to separable potential.

• Get identical results for reference configuration  (but not necessarily 
elsewhere!)

• Can result in ghosts (spurious bound states)

• Need ghostwatching / ghostbusting!
[Gonze,Stumpf & Scheffler, PRB 44, 8503 (1991)].



Soft / Smooth Pseudopotentials

• Want to lower Ecut (cut-off for plane wave basis).

• Various strategies:
- Reduce V(q) for large q (Vanderbilt, 1985).

- Reduce ψ(q) for large q (Rappe, Rabe, Kaxiras & Joannopoulos, 1990)

- Make smooth near origin (Troullier & Martins, 1991)

• Cut-offs lowered considerably, but still higher than we 
would like, especially for
> first row elements (1s, 2p nodeless)
> transition metals (3d nodeless)
> rare-earths (4f nodeless)



Fast convergence* with soft pseudopotentials

* w.r.t. Ecut

e.g. Cu: localized d orbitals �
high cut-off needed with BHS pseudopotential

Troullier-Martins RRKJ



Ultrasoft Pseudopotentials
• Vanderbilt, Phys. Rev. B 41 7892 (1990).

• Do away with norm conservation!!

• Can make ψPS as soft as desired!

• Drastically reduces Ecut, especially
for “difficult” elements.

• New separable form.

• Choose multiple energy references
(to improve transferability). 

• Solve generalized eigenvalue eqn.

Vanderbilt

Laasonen, Car, Lee & Vanderbilt



Transferability: log derivatives
• Condition that pseudoatom reproduces behavior of all-

electron atom in a wide variety of chemical environments.
• Log derivatives guaranteed

to match at reference energy,
check how log derivatives 
change with energy .

Has ghost �

Log derivatives don’t match �

Ag



Transferability: Chemical Hardness
• See how eigenvalues change with occupation    

• Chemical Hardness matrix:                    [Teter, 1993] . 

e.g.: check transferability
of a pseudopotential for
Ag with 4d in core:



Non-Linear Core Correction

• Working only with ρval corresponds to linearizing the XC
potential, but  VXC(ρval+ρcore) � VXC(ρval)+Vxc(ρcore)

• This is particularly a problem when there is significant 
overlap between ρval and ρcore

• Correction: [Louie, Froyen & Cohen, Phys. Rev. B 26 1738 (1982)]:

- When unscreening, subtract out VH(ρval) 
and VXC(ρval+ρcore) 

- Store ρcore from atomic calculation
- Use VXC(ρval+ρcore) in all calculations
- Okay to just use partial ρcore (in region of overlap)
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