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Geometric (Berry) Phases in Quantum
Mechanics
Dependence on parameter & H(&)

(1) = HED)W () (1)

At t=0: W (0) = |n,&(0) >, and &(t) is
changed asdiabatically:

HEW)In, (t) >= Bn(€(t))|n, £(1) >
w(t) = eap (i) i [ t Ba(6(s))ds ) n,€(1) >

W (t) satisfies Schrodinger equation if:
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vn, 1S real, topological, non-dynamical phase
independent of the rate of change in & with
time.



Information in the phases
Consider closed paths: H(t=0)=H({t=1T)
— Berry phase.

e Dynamical Phase (dependent on energy):
“How long did your trip take?”

e Geometric Phase (dependent on path and
geometry):
“MVWhere have you been?”
sort of like memory.



Geometric phase

Quantum Hamiltonian H(£) parametrized by
a scalar field &.

Relative phase between eigenstates wu, at ¢
and &’

e—iAfyn _ <Un(f)|un(§/)>
[(un(&)un(€’))]
= Ay = — ImIn (up(un(€)) (2)
For ¢ = ¢ + A€ with A¢ — 0. The leading
order in A¢ =

Ay = i<un<§>|§£un<g>mg

For an evolving H(£) from &1 to & the total
geometric phase picked up by the system:
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Berry phase

Consider a closed path in parameter space:

§&1— & — & — &1

Adiabaticity: system evolves slowly such that
it is always in the same eigen state (labelled
by n) of the instantaneous Hamiltonian.
Total geometric phase:

12 2 1
Y = Y2 + 42 +

= —ImIn <un(§1)|un(§2)><un(§2)|un(§3)><un(§3)|u”(£1()4>)

Note : All arbitrary phases cancel out.
Continuum limit:

W = § xn(©)d, (5)

where xn(§) = i(un(€)|Frun(€)) is the Berry
connection.



Generalization of geometric phase

e Aharonov and Anandan (1987):

Adiabatic evolution is not necessary.

Any closed loop parametric evolution of
Hamiltonian yields geometric phase ~.

~ becomes vP€V in the adiabatic limit.

e Samuel and Bhandari (1988):

Closed loop not a necessary condition for
defining ~.

Pancharatnam connection @ between eigen-
states at £ and ¢’ gives the phase:

B=—1Im In (un(&)|un(&))



Open path geometric phase
Consider an open path in parameter space :

§1— & — 83— &,

Hamiltonian at &1 and &4 are related by a sym-
metry:

H(E4) = W TH(EDW = un(€2) = W tun(&r)

= v, =—Im In (

(un (1) |un (€2)) (un (€2) [un (€3)) (un (€3)|W " Hun (€1)))

Example : Bloch electrons in an isolated band n

For a direction o :

ki, =Dy, i =110 M

bo: A reciprocal space lattice vector

H(ko + ba) = exp(—ibq - 7)H (ko) exp(iby - 1)

H(k): Hamiltonian for the cell periodic part
of Bloch functions

U (kotba) = EXP(—ibaT)uy, — Periodic gauge

(6)



%(35 =—Imn <unké|unk§é><unkg|unkg>

'”<unkc(xM_l)|€(_Zbara)|unké> (7)

In the continuum limit:

. [ba 0
’7’% — 7’/0 <unkza|a—kaunka>dka (8)



Non Abelian geometric phase

N-electron single Slater determinant state from
independent electronic wavefunctions:

(W) = \/—Iul(ﬁ)uz(ﬁ) un (&)
From (2): Ay = —Im In (W(&)|W(£))

= — Im In det S(&, &), (9)
Si; (€, &) = (uw;(&)|u;(§)) — (N x N) matrix

For a closed path made of M contiguous dis-
creet points in £ space the Berry phase [(3)]
generalizes to (N x N) matrix [T given by:

" =L 56 €1 1)
In the continuum limit:

exp —ill = P exp —iyfx(g)dg, (10)

P is path ordering operator.

Xij(§) = z(uz(£)|—u](€)>: Non Abelian connection

— Im In |—|£\4Z1<\!j(£3)|w(§s+l)>
—Imindete ™ = Retr (11)
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(11) implies :

N
~= Retrl = nyj (12)
j=1
{’yj}, the eigenvalues of gauge invariant [, are
potential physical observable.
Within parallel transport gauge the open path
geometric phase [(6)] if obtained as:

ull(€2)) = W ul(e))  (13)

Similarly the geometric phase matrix [ is ob-
tained as:

€M, = wlEIwhdE)) a9
For Bloch electrons along k. in the Brillouin
zone :

ira]  — o Ml obarry, |l
[6 ]ij_<uk,i|€ |uk+6aba,j> (15)

where by, = 27 /a, a being the lattice constant
in the « direction.



Parallel Transported Wavefunctions and Geo-
metric Phase

e Parallel Tra nsport:

<n§\ |n§> 0

e Geometric phase: |n,& + A& >|1= In, & >
FAEG I, € >

phasc
(=
P

hysical spac
Path in the parameter space Phase factor picked up

~ recoverd once the loop is closed!

e NO random phases if:

(&) and ¥ (&>) are related to each other
by parallel transport



Calculation of ' phase matrix (DFT)

e Parallel Transport(PT) Bloch functions from

k=—-_tok=7
a

— Obtain 4|u, > using DFT linear re-
sponse s.t. < ukm|d%|ukn >=0

— |kt Akn >= gy > +AkS|uy, > Runge-
Kutta integrate from k to k + 0k

— Obtain ' = ImLog < u (Wlug, >

k+2Zm

e Discretized parallel transport:
— Obtain overlap matrix: S(k,k + Ak)
— Singular Value Decomposition S = UVt

— Rotate wavefunctions at k+Ak by T =
(UvT)*

— Obtain ' = ImLog < u (Wlug, >

k+2Zm



Geometric Phases in 1-d and 2-d

1-D case
E —=
I
[
k
2-D case .
- .-=Lines of
A parallel transport
ky
I'k
,,,,,,,,,,,,,,,,,,, | X( y)
kx

e Eigenvalues of [': Centre of Wannier func-
tion (“Bond")

e Eigenvectors of [ which bands make up
the “Bond”



Electronic polarization: geometric phase

For electrons in a crystal: conventional def-
inition of electronic polarization in terms of
Bloch functions :

fqe

M
Z Z<¢l><\,mlra|¢l><\,m>
ka m

is ill defined.

Rather, the change of polarization AP, =
[ dX (8Pa) in an evolving system (A being the
evolving parameter) is a meaningful physical
quantity.

In the derivative of Py(as given above) w.r.t.
A, substituting perturbation expansion for the
wavefunction derivatives and using the iden-
tity 1 [HO\),?] = L5 we obtain :

oP2

O



occ empty

—ieh |pa|¢kn><¢kn| BN |wkm>
Qme YS‘ Y (Eka,m Eka,n)Q e (16)

With identities: po = %[%,H(A)] ; [%,Hé‘a] =

%Vf and [aA 951 = O, followed by algebraic

manipulation eqn.(16) yields:

zfq 0
DPo =2 ez el 2 i) 15

Zer /1 o A 0,
dk dA\—— — 17
87‘(‘3 “ [ 0 Okq <uk’m|8)\|uk’m> )

where uﬁ’m = e_ik'rwli"m
Periodic gauge: wﬁ"m(r) = wﬁ+éaba,m(r) elim-
inates the second term and gives:
: M
ifqe A O
P = dkao{u —u
¢ 8m347JBzZ o k’m|8ka| k,m/

Same as the Zak phase expression [(8)] for
single band.

(18)

In the discreet k mesh in Brillouin zone P, is



obtained by integrating Eqn.(9) :

fQG/
— dkydk
873 Joy b,

{ 1m0 MLy det (uy lud D)) (19)

where kx, forms a regular grid of M kx points
for each (ky, k).

Ean (19) is used in the Berry phase calcula-
tion of polarization:

M: # of k-points along the direction of P.
N: # of bands (size of the subspace).

Pm:




Wannier function

Definition: Fourier transform of cell periodic
wave functions.

Wi(r,R) = VNQ/(27)3 /B ] Ry | (r)dk
(20)

R — real space lattice vector.

Orthogonality relation:

fQ dI‘W;(I‘, R)Wn/(l‘, R/) — 5nn’5RR’

Orthonormal set of Wannier function(WF) as
basis:

upk(r) = 1/VNY *BTDw, (r R) (21)
R

Uk n €an have two types of phases:

1. Random phase due to diagonalization.

2. Gauge dependent phase of geometric ori-
gin.

= WHFs are non-unique.



LLocalized WFs are obtained from wave func-
tions which are cell periodic and differentiable
through out the BZ.

Substituting (21) in (18) we get:

fqe Z / ro|Wa()[2dr  (22)

For any arbitrary direction o in real space, a
unigue set of gauge exist that diagonalize el a

[(15)].

The resultant WFs are perfectly localized in «
direction. They are eigen states of projected
position operator:

P7, P (23)
where P is the projection operator onto the
group of bands under consideration.

Centroid of these WFs:
& [ ra|Wa(r)|2dr = ayn/27
a Is lattice constant and ~, are eigen values
of I 4.



In terms of parallel transported wave functions
{Uk,n} obtained from the energy eigen states

{ukm} for multibands in 1D (chosen to be «)

the desired unique gauge at each k. :
Tna

Usin o, = €XD {—z’ka (2—) } ME (24)

o
M diagonalizes [ ,.

Generalized expression for WFE for insulator as
well as metals at temperature T':

Wi (ra, R)) = [ dka 3 e'helra=h)

Cras, | F (o T)}% [uk ) (25)

f(E,..,T) is FD distribution and
Cka — [rka gka

R: unitary transformation from energy eigen
states to parallel transported states.

For 3-D crystal systems : three projected po-
sition operators or I matrices do not com-
mute.



= NO unique gauge that gives WFs perfectly
localized in all directions.

Maximally localized Wannier function(MLWF):

A conceptual extension of Foster-Boys local-
ization scheme to periodic systems.

MLWFs obtained through variational minimiza-
tion of second moment (cumulant) of squared
WFs w.r.t. evolving unitary transformation
matrix at each k
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