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The cRPA approach.

The Constrained RPA Method 7.11
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Fig. 3: A schematic picture explaining the meaning of and . While is confined to the
transitions within the subspace, may contain transitions between the and subspaces.

occ unocc

(47)

where are usually chosen to be the Kohn-Sham eigenfunctions and eigenvalues and
is a combined index for the -vector and the spin . For systems without spin-

flipping processes, and evidently have the same spin. has exactly the same form as in
Eq. (47) but with the bands and restricted to the subspace. We note that contains
not only transitions inside the subspace but also transitions between the and subspaces as
illustrated in Fig. 3.
Since does not contain low-energy polarisations that are responsible for metallic screening,
becomes long range. The asymptotic decay of as a function of distance is expected to

behave according to where rather than exponential, as often assumed. This
behaviour is illustrated, e.g., in the case of the BEDT-TTF organic conductors [17].
It may be argued that for narrow-band materials with strong correlations it would not be suffi-
cient to calculate within the RPA. We would like to point out that from a physical point of
view much of the error in the RPA resides in rather than because the former corresponds
to the polarisation of the narrow bands, where we expect vertex corrections to the RPA to be
large, whereas the latter corresponds to polarisation involving more extended states, for which
the RPA is supposed to perform well. Since it is that enters into the calculation of , we
expect that the error in the RPA has much less influence on than one would anticipate
In practice, Eq. (44) is solved by introducing a set of basis functions, and the choice of basis
functions depends on the band-structure method. For band-structure methods based on pseu-
dopotentials, a plane-wave basis set is a natural choice. For band-structure methods based on

In cRPA, all excitations are taken into account except the one belonging to the
correlated subshell.

εr(ω) = 1− vPr(ω).

and Pr is the cRPA non interacting polarisability. which describe transitions between
occupied and empty states.
Picture from F. Aryasetiawan, The LDA+DMFT approach to strongly correlated materials E. Pavarini, E. Koch, D. Vollhardt, A. Lichtenstein
(Eds.), Forschungszentrum Jülich (2011).
F. Aryasetiawan, Imada, Georges, Kotliar, Biermann et Lichtenstein PRB 2004.
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The cRPA approach.

We call here χ0 the non interacting (Kohn-Sham) polarizability of the system. Let’s now
separate the correlated states (They could be d states but the method is more general
and correlated orbitals could gather several orbitals from e.g different atoms) from the
rest (r). We thus have:

χ0 = χcorrel
0 + χr0

thus, we can rewrite the inverse dielectric matrix as:

ε−1 =
1

1− v(χcorrel
0 + χr0)

We now define the dielectric function due to correlated electrons as
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The cRPA approach.

ε−1
correl=̂

1

1−Wrχcorrel
0

,

the dielectric function of the other electrons as

ε−1
r =̂

1

1− vχr0
,

and the interaction screened only by the other (r) electrons as:

Wr =
v

1− vχr0
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The cRPA approach.

With these definitions, one shows that

ε−1
correlε

−1
r = ... =

1

1− vχr0 − vχcorrel
0

=
1

1− vχ0
= ε−1

Thus, we have
W =̂ε−1v = ε−1

correlε
−1
r v

We can interpret this result: The fully screened RPA interaction is the combination of
two screening processes. First, the bare interaction is screened by non-correlated
electrons (r), and it gives rises to a screened interaction Wr . Secondly the screening
of this interaction by correlated electrons recovers the fully screened interaction.
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The cRPA approach: key parameters

The definition of correlated orbitals

We use Projected Local Orbitals Wannier functions: effective interaction can thus
be used directly in DFT+DMFT calculations.

Depending on the energy window used in the calculation, several localization of
orbitals can be described.

In ABINIT, to decide the windows of energy of the Wannier functions, use the keywords
dmftbandi and dmftbandf.
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Definition of correlated orbitals: example of SrVO3.
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Definition of correlated orbitals: example of SrVO3.
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Definition of correlated orbitals: example of SrVO3.
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Definition of correlated orbitals: example of SrVO3.
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Bare interaction can be computed as:

v = 〈χχ|
1

r1 − r2
|χχ〉

Wannier function bare interaction v (eV)
Wannier d 15.3

Wannier dp 19.4
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The cRPA approach: key parameters

The definition of screening.

The core of the cRPA is to suppress the screening corresponding to transitions
inside correlated orbitals.

In ABINIT, to decide the windows of energy for which the screening is suppressed, use
the keywords ucrpa bands.
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Definition of correlated orbitals: example of SrVO3.
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Effective interaction can be computed as:

U = 〈χχ|ε−1
cRPAv|χχ〉

Wannier function bare interaction v (eV) effective interaction U (eV) Name of the model
Wannier d 15.3 2.8 d− d

Wannier dp 19.4 10.8 dp− dp
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Definition of correlated orbitals: example of SrVO3.
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Effective interaction can be computed as:

U = 〈χχ|ε−1
cRPAv|χχ〉

Wannier function bare interaction v (eV) effective interaction U (eV) Name of the model
Wannier d 15.3 2.8 d− d

Wannier dp 19.4 10.8 dp− dp
Wannier dp 19.4 3.4 d− dp
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Some conventions

Udiag =
1

2l + 1

∑
i

〈χiχi|Wr|χiχi〉

U =
1

(2l + 1)2

∑
i,j

〈χiχj |Wr|χiχj〉

One has
Udiag > U

In ABINIT, one always uses U as input, whereas in some models, U is defined as
Udiag !
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SrVO3 NiS
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From B. Amadon, F. Lechermann et al PRB 2008
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For non entangled bands (ucrpa=1)

χ
full
0 (G,G

′
,q) =

∑
k,n,n′

〈ψnk|e
−i(q+G)r|ψn′k+q〉

〈ψn′k+q|e
i(q+G′)r|ψnk〉

fn′k+q − fnk

εn′k+q − εnk + ω + iδ

χ
f
0(G,G

′
,q) =

∑
k,n=f,n′=f

〈ψnk|e
−i(q+G)r|ψn′k+q〉

〈ψn′k+q|e
i(q+G′)r|ψnk〉

fn′k+q − fnk

εn′k+q − εnk + ω + iδ

In χf
0(G,G

′,q) the bands (nk) and (n′k) are f bands, and the transition should be suppressed. Thus

χ
cRPA
0 (G,G

′
,q) = χ

full
0 (G,G

′
,q)− χf

0(G,G
′
,q)
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For entangled bands (ucrpa=2)

χ
full
0 (G,G

′
,q) =

∑
k,n,n′

〈ψnk|e
−i(q+G)r|ψn′k+q〉

〈ψn′k+q|e
i(q+G′)r|ψnk〉

fn′k+q − fnk

εn′k+q − εnk + ω + iδ

χ
f
0(G,G

′
,q) =

∑
k,n,n′

∑
m1

|Cm1
nk
|2

∑
m2

|Cm2
n′k+q

|2〈ψnk|e
−i(q+G)r|ψn′k+q〉

〈ψn′k+q|e
i(q+G′)r|ψnk〉

fn′k+q − fnk

εn′k+q − εnk + ω + iδ

with Cm1
nk

= 〈φm1
|ψnk〉. If

∑
m1
|Cm1
nk
|2 = 1 and

∑
m1
|Cm1
n′k|

2 = 1: the bands (nk) and (n′k) are f

bands, and the transition will be suppressed in χcRPA
0 (G,G′,q):

χ
cRPA
0 (G,G

′
,q) = χ

full
0 (G,G

′
,q)− χf

0(G,G
′
,q)
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Conclusion

cRPA is a coherent way of computing effective interactions for DMFT

The same correlated orbitals can be used.

Care must be taken to estimate the relevant Wannier orbitals and screening.

Implementation in ABINIT is discussed in B. Amadon,T. Applencourt, and F. Bruneval
PRB 2014.
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