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Properties of solids from DFT 

Computation of ... 
 interatomic distances, angles, total energies 
 electronic charge densities, electronic energies 

 
A basis for the computation of ... 

 chemical reactions 
 electronic transport 
 vibrational properties 
 thermal capacity 
 dielectric response 
 optical response 
 superconductivity 
 surface properties 
 spectroscopic responses 
 ... 
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“Classic” References :  
 S. Baroni, P. Giannozzi and A. Testa, Phys. Rev. Lett. 58, 1861 (1987) 
 X. Gonze & J.-P. Vigneron, Phys. Rev. B 39, 13120 (1989) 
 X. Gonze, Phys. Rev. A 52 , 1096 (1995) 
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Overview
1.  A brief reminder : Density Functional Theory 
2.  Material properties from total energy derivatives : phonons 
3.  Perturbations (adiabatic) 
4.  Perturbation Theory : « ordinary » quantum mechanics 
5.  Density-Functional Perturbation Theory (DFPT) 
6.  Phonon band structures from DFPT 
7.  Dielectric properties from DFPT 
8.  Thermodynamic properties from DFPT 
9.  LDA / GGA / Van der Waals 
10.  Temperature dependence of the electronic structure 
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VKS(r) = Vext (r) + n(r1)
r1 - r∫ dr1 +

δExc n[ ]
δn(r)

The Kohn-Sham orbitals and eigenvalues 
Non-interacting electrons in the Kohn-Sham potential :  

Hartree potential     Exchange-correlation potential 

Density  

To be solved self-consistently ! 
Note. At self-consistency, supposing XC functional to be exact : 
-  the KS density = the exact density,  
-  the KS electronic energy = the exact electronic energy 
-  but KS wavefunctions and eigenenergies correspond to a fictitious 

set of independent electrons, so they do not correspond to any 
exact quantity. 

−
1
2
∇2 +VKS(r)⎛

⎝⎜
⎞
⎠⎟
ψ i (r) = εiψ i (r)

n(r) = ψ i
*(r)ψ i (r)

i
∑
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Minimum principle for the energy 

Variational principle for non-interacting electrons : 
solution of KS self-consistent system of equations  
is equivalent to the minimisation of 

under constraints of orthonormalization  
for the occupied orbitals. 

EKS ψ i{ }⎡⎣ ⎤⎦ = ψ i −
1
2
∇2 ψ i

i
∑ + Vext (r)n(r)∫ dr + 1

2
n(r1)n(r2 )

r1 - r2
∫ dr1dr2 + Exc n[ ]

ψ i ψ j = δ ij
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The XC energy 

To be approximated ! 
Exact result : the  XC energy can be expressed as 

Exc n[ ] = n(r1)ε xc (r1;n)∫ dr1

Local density approximation (LDA) : 
-  local XC energy per particle only depends on local density 
-  and is equal to the local XC energy per particle of an  

homogeneous electron gas of same density (« jellium »)  
   εxc

LDA(r1; n ) = εxc
hom( n(r1) )

Generalized gradient approximations (GGA) 

In this talk, GGA = « PBE »  
Perdew, Burke and Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) 

Exc
GGA n[ ] = n(r1)εxc

GGA (n(r1), ∇n(r1) )∫ dr1

Exc
LDA n[ ] = n(r1)εxc

LDA (n(r1))∫ dr1
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Material properties from 
total energy derivatives : 

phonons 
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Changing atomic positions 

E BO 

Born-Oppenheimer approximation … 
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Phonon frequencies from force constants 

�
    Fourier Transform (using translational invariance) :�
�
�

Computation of phonon frequencies and eigenvectors = 
  solution of generalized eigenvalue problem 

 
!Ckα,k'α '

"q( )  =  Ckα,k'α '
a'
∑ (0,a') ei"q.

"
Ra'

 
!Ckα,k'α '

k'α '
∑

"q( ).um"q (k'α ') = M k . ωm"q
2 . um"q (kα)

phonon displacement 
pattern masses square of 

phonon frequencies 

How to get second derivatives of the energy ?  
    Density Functional Perturbation Theory... 
      

Cκα,κ'α ' a,a '( )  = ∂2EBO
∂Rκα

a ∂Rκ'α '
a'Matrix of interatomic force constants :�

�
�
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Phonons : exp vs theory 

Diamond 

Zircon 

XG, G.-M. Rignanese and R. Caracas.  
Zeit. Kristall. 220, 458-472 (2005)  

Rignanese, XG and Pasquarello.  Phys. Rev. B 63, 104305 (2001) 

Phonons at zone center 
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In addition of being able to compute derivatives of BO energy : 

Treating phonons of different wavelengths ?  
               (Not only periodic ones) 
 

 Treating electric field ? 
    Electric field => linear potential,  
    incompatible with periodicity  

 
 Even for phonons at zero wavevector (Gamma), 
    treating LO-TO splitting 
      (longitudinal optic – transverse optic) 

Challenges for periodic materials  ? 
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Perturbations 
(adiabatic) 
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Why perturbations ? 
Many physical properties = derivatives of total energy  
(or suitable thermodynamic potential) with respect to perturbations. 
Consider : 

 •  atomic displacements (phonons) 
 •  dilatation/contraction of primitive cell   
 •  homogeneous external field   (electric field ...)   

 
Derivatives of total energy (electronic part + nuclei-nuclei interaction) :    
1st order derivatives :  forces, stresses, dipole moment ...  
2nd order derivatives :  dynamical matrix, elastic constants, dielectric susceptibility 

 atomic polar tensors or Born effective charge tensors  
 piezoelectricity, internal strains 

3rd order derivatives :  non-linear dielectric susceptibility, Raman susceptibilities 
 electro-optic effect, phonon - phonon interaction, Grüneisen parameters, ... 

Further properties obtained by integration over phononic degrees of freedom : 
     entropy, thermal expansion, phonon-limited thermal conductivity ...   
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Perturbations 

* Variation of energy and density around fixed potential 
�
�
�
 �
*  Perturbations (assumed known through all orders)  
 

i.e. : to investigate phonons, parameter of perturbation  
   governs linearly nuclei displacement, but change of 
   potential is non-linear in this parameter. 

 

Eel λ( )  = ψα λ( ) T̂+V̂ext λ( ) ψα λ( )  + EHxc ρ λ( )⎡⎣ ⎤⎦
α,occ
∑

ρ(!r;λ) = ψα
∗ (!r;λ) ψα (!r;λ)

α,occ
∑

V̂ext  λ( )= V̂ext
(0)  + λV̂ext

(1)  + λ2V̂ext
(2)  + ...

ΔVph (!r ) = Vκ (
κ: nuclei+cell

∑
!r - (
!
Rκ

(0)+!uκ )) - Vκ (!r - 
!
Rκ

(0) )
!uκ   =  λ  !eκ   cos(!q . 

!
Rκ

(0) )
small 

parameter 
‘polarisation’ 

of the phonon 
phonon 

wavevector 
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How to get energy derivatives ? 

* Finite Differences�

Compare   and �
�

‘Direct’ Approach   (Frozen phonons ... Supercells …) 
 [Note problem with commensurability] �

�
* Hellman - Feynman theorem  (for E(1)) 
 
 Due to variational character :  
 
�

In order to get E(1)  we do not need     (1) 
 

E ψ;  Vext{ }

∂E
∂ψ

 = 0

dE
dλ

 = ∂E
∂Vext

∂Vext

∂λ
 + ∂E

∂ψ
 . ∂ψ

∂λ
 = ∂E

∂Vext
Vext

(1)

= 

0     (1)

E' ψ ';  V'ext{ }

ψ
ψ

E = E(0)  + λE(1)  + λ2E(2)  + ... ψ  = ψ (0)  + λψ (1)  + λ2ψ (2)  + ... 
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*

*

Hypothesis : we know 
�

 through all orders, as well as 
            
Should calculate :  

General framework of perturbation theory 
A λ( )= A(0)  + λA(1)  + λ2A(2)  + λ3A(3)...

E ψ;  Vext{ }
Vext  λ( )= Vext

(0)  + λVext
(1)  + λ2Vext

(2)  + ...

         (0) ,         , E(0) 

E(1) , E(2) , E(3)...

ψα
(1) , ψα

(2) , ψα
(3)  ...

εα
(1) ,  εα

(2) ,  εα
(3)  ...

ρα
(1) ,  ρα

(2) ,  ρα
(3)  ...

2nd order derivatives of BO energy :          
dynamical matrix, dielectric susceptibility,  
elastic constants, …  

ψ ρα
(0)

will be needed for 
T-dependence of  
electronic structure 
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Ordinary quantum 
mechanics 
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Perturbation theory for ordinary quantum mechanics 

Hamiltonian supposed known through all orders 

Ĥ = Ĥ (0)+ λĤ (1)+ λ2Ĥ (2)+... = λnĤ (n)

n
∑

(Ĥ - εα ) ψα  = 0          (Schrödinger  equation)       

ψα ψα  = 1                  (normalisation condition)

ψα Ĥ - εα ψα  = 0

or    εα  =  ψα Ĥ ψα    (expectation value)
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Suppose 

with 

One expands the Schrödinger equation: 

Ĥ(λ) ψ n (λ)  = εn ψ n (λ)       valid for all λ

Perturbation expansion of the Schrödinger Eq. 

Ĥ(0) ψ n
(0)  + λ  Ĥ(1) ψ n

(0)  + Ĥ(0) ψ n
(1)( )  + λ2  Ĥ(1) ψ n

(1)  + Ĥ(0) ψ n
(2)( )  + ...

=  εn
(0)  ψ n

(0)  + λ  εn
(1) ψ n

(0)  + εn
(0) ψ n

(1)( )+ λ2  εn
(2) ψ n

(0)  + εn
(1) ψ n

(1)  + εn
(0) ψ n

(2)( )+ ...

Ĥ(λ)  =  Ĥ(0)  + λ  Ĥ(1)

ψ n (λ) = ψ n
(0)  + λψ n

(1)  + λ2ψ n
(2)  + ...

εn (λ) = εn
(0)  + λ  εn

(1)  + λ2εn
(2)  + ...
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In    = 0, one gets                                                              no surprise … 
 
 
Derivative with respect to        , then       = 0   (=first order of perturbation) 

  
=> 
 
2 derivatives with respect to     , then     = 0  (=second order of perturbation) 

  
=> 

Ĥ(0) ψ n
(0)  + λ  Ĥ(1) ψ n

(0)  + Ĥ(0) ψ n
(1)( )  + λ2  Ĥ(1) ψ n

(1)  + Ĥ(0) ψ n
(2)( )  + ...

=  εn
(0)  ψ n

(0)  + λ  εn
(1) ψ n

(0)  + εn
(0) ψ n

(1)( )+ λ2  εn
(2) ψ n

(0)  + εn
(1) ψ n

(1)  + εn
(0) ψ n

(2)( )+ ...

Ĥ(0) ψ n
(0)  = εn

(0) ψ n
(0)

Ĥ(1) ψ n
(0)  + Ĥ(0) ψ n

(1)  = εn
(1) ψ n

(0)  + εn
(0) ψ n

(1)

Ĥ(1) ψ n
(1)  + Ĥ(0) ψ n

(2)  = εn
(2) ψ n

(0)  + εn
(1) ψ n

(1)  + εn
(0) ψ n

(2)

Perturbation expansion of the Schrödinger Eq. 

λ

λ λ

λ λ
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with 
 
Same technique than for Schrödinger equation, one deduces :  
 

         

∀λ  : ψ n (λ) ψ n (λ)  = 1If 

ψ n
(0) ψ n

(0)  = 1

ψ n
(1) ψ n

(0)  + ψ n
(0) ψ n

(1)  = 0

ψ n
(2) ψ n

(0)  + ψ n
(1) ψ n

(1)  + ψ n
(0) ψ n

(2)  = 0

ψ n (λ) = ψ n
(0)  + λψ n

(1)  + λ2ψ n
(2)  + ...

Perturbation expansion of the normalisation 

 
        no surprise … 
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Ĥ(1)  ψ n
(0)  + Ĥ(0)  ψ n

(1)  = εn
(1) ψ n

(0)  + εn
(0)  ψ n

(1)

Hellmann & Feynman theorem : 
Start from first-order Schrödinger equation 

 

Premultiply by 

 
So :                                         = Hellmann & Feynman theorem 
 
 

•             and          supposed known 
•               not needed 
•                             = expectation of the Hamiltonian for the non-perturbed wavef. 

     

ψ n
(0) εn

(0)

ψ n
(0)

ψ n
(0) Ĥ(1) ψ n

(0)  + ψ n
(0) Ĥ(0) ψ n

(1)  = εn
(1) ψ n

(0) ψ n
(0)  + εn

(0) ψ n
(0) ψ n

(1)

= = 1

εn
(1)  = ψ n

(0) Ĥ(1) ψ n
(0)

ψ n
(0) Ĥ(1)

ψ n
(1)

ψ n
(0) Ĥ(1) ψ n

(0)

εn
(1)      OK !

εn
(1)
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Start from second-order Schrödinger equation 
 
 

Premultiply by 

Second-order derivative of total energy 

ψ n
(0)

Ĥ(1) ψ n
(1)  + Ĥ(0) ψ n

(2)  = εn
(2) ψ n

(0)  + εn
(1) ψ n

(1)  + εn
(0) ψ n

(2)

εα
(2)  =  ψα

(0) Ĥ (1)- εα
(1)  ψα

(1)  or    εα
(2)  =  ψα

(1) Ĥ (1)- εα
(1)  ψα

(0)

Both can be combined :

εα
(2)  = 1

2
 ψα

(0) Ĥ (1)- εα
(1) ψα

(1)  + ψα
(1) Ĥ (1)- εα

(1) ψα
(0)( )

and,  using ψn
(1) ψn

(0)  + ψn
(0) ψn

(1)  = 0 

       =  1
2

ψα
(0) Ĥ (1) ψα

(1)  + ψα
(1) Ĥ (1) ψα

(0)( )
  No knowledge of           is needed, but needs           !  How to get it ? ψα

(2) ψα
(1)

εα
(2)
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In search of 
Again first-order Schrödinger equation : 
 

 
 
Terms containing           are gathered : 
 

 

Equivalence with matrix equation (systeme of linear equations) 

 

usually solved by   if          exist. 

ψ n
(1)

A . x  =  y

Ĥ(1)  ψ n
(0)  + Ĥ(0)  ψ n

(1)  = εn
(1) ψ n

(0)  + εn
(0)  ψ n

(1)

known known 

Ĥ(0)  - εn
(0)( )  ψ n

(1)  =  - Ĥ(1)  - εn
(1)( )  ψ n

(0) (called Sternheimer equation) 

x  =  A-1 y A-1

ψ n
(1)
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Variational Principle for the lowest   
(Hylleraas principle) 
ε(2)=min

ψ(1)
ψ (1) Ĥ (1) ψ (0) + ψ (1) Ĥ (0) - ε(0) ψ (1) + ψ (0) Ĥ (2) ψ (0) + ψ (0) Ĥ (1) ψ (1){ }  

with the following constraint on           : 
 
�
Allows to recover Sternheimer’s equation : 
 
                 + Lagrange multiplier 

  
 => 

 
 
Equivalence of :  *  Minimization of  

          *  Sternheimer equation 
          *  also … sum over states … Green’s function … 

 

ψ (0) ψ (1) + ψ (1) ψ (0) = 0     

δ
δψ (1)  [ ... ] = 0    

(Ĥ (0)- ε(0) ) ψ (1)  + (Ĥ (1)- ε(1) ) ψ (0)  = 0

ψ n
(1)

εn
(2)

εα
(2)
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Computation of              (I)   εα
(3)

Starting from

Premultiply by           gives 

(Ĥ (0)- εα
(0) ) ψα

(3) + (Ĥ (1)- εα
(1) ) ψα

(2) + (Ĥ (2)- εα
(2) ) ψα

(1) + (Ĥ (3)- εα
(3) ) ψα

(0)  = 0

ψα
(0)

εα
(3)  = ψα

(0) Ĥ (3)  ψα
(0)

         + ψα
(0) Ĥ (2)- εα

(2)  ψα
(1)

         + ψα
(0) Ĥ (1)- εα

(1)  ψα
(2)

! ψα
(2) is needed in this formula 
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The computation of                  (II)   εα
(3)

However, perturbation expansion of       at third order gives: 
 

�
The sum of terms in a row or in a column vanishes ! (Exercice !) 
 Suppress 2 last columns and 2 last rows, rearrange the equation, and get:   

0 = ψα Ĥ- εα ψα

0  =  ψα
(0) Ĥ (3) - εα

(3) ψα
(0) + ψα

(1) Ĥ (2) - εα
(2) ψα

(0) + ψα
(2) Ĥ (1) - εα

(1) ψα
(0) + ψα

(3) Ĥ (0) - εα
(0) ψα

(0)

     + ψα
(0) Ĥ (2) - εα

(2) ψα
(1) + ψα

(1) Ĥ (1) - εα
(1) ψα

(1) + ψα
(2) Ĥ (0) - εα

(0) ψα
(1)

     + ψα
(0) Ĥ (1) - εα

(1) ψα
(2) + ψα

(1) Ĥ (0) - εα
(0) ψα

(2)

     + ψα
(0) Ĥ (0) - εα

(0) ψα
(3)

εα
(3)  = ψα

(0) Ĥ (3) ψα
(0) + ψα

(1) Ĥ (2) ψα
(0)

        + ψα
(0) Ĥ (2) ψα

(1) + ψα
(1) Ĥ (1)-εα

(1) ψα
(1)

[ We have used                            and                                               ]ψα
(0) ψα

(0)  = 1         ψα
(0) ψα

(1) + ψα
(1) ψα

(0)  = 0

! ψα
(2) is not needed in this formula 
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Dynamical matrices  
from density-functional 

perturbation theory  
(DFPT) 
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Density functional perturbation theory 

Without going into the formulas, there exist expressions : 

E(0)  ψα
(0){ }                                                              ψα

(0)

E(1)  ψα
(0){ }

E(2)  ψα
(0);ψα

(1){ }                                                       ψα
(1)

E(3)  ψα
(0);ψα

(1){ }
E(4)  ψα

(0);ψα
(1);ψα

(2){ }                                               ψα
(2)

E(5)  ψα
(0);ψα

(1);ψα
(2){ }    

variational with respect to  

variational with respect to  

variational with respect to  

          knowledge of                       allows one to obtain 

+        knowledge of                allows one to obtain 

          knowledge of                              allows one to obtain ψα
(0);ψα

(1);ψα
(2){ }  ρ(2), H(2), εα

(2)
ψα

(0);ψα
(1){ }  

ψα
(0){ }  ρ(0), H(0), εα

(0)

ρ(1), H(1), εα
(1)

Need          unlike in ordinary QM ψα
(2)  
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Basic equations in DFT 

Solve self-consistently Kohn-Sham equation 

Ĥ ψn  = εn ψn

 
ρ(!r ) = ψn

* (!r )ψn (!r )
n

occ
∑

Ĥ =T̂+ V̂+V̂Hxc[ρ]

What is         ?  V̂

Eel ψ{ }  = ψn T̂+ V̂ ψn
n

occ
∑ +EHxc[ρ]

V̂(!r) =  - Zκ
!r-
!
Rκ

aaκ
∑

or minimize 

ψ n (r)

ρ(r)

Ĥ

δmn  = ψm ψn for m,n ∈occupied set
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Basic equations in DFPT 

Solve self-consistently Sternheimer equation 

(Ĥ (0)-εn
(0) ) ψn

(1)  = - (Ĥ (1)-εn
(1) ) ψn

(0)

 
ρ(1)(!r ) = ψn

(1)*(!r )ψn
(0)(!r )+ψn

(0)*(!r )ψn
(1)(!r )

n

occ
∑

Ĥ (1)  = V̂ (1)+ δ2EHxc
δρ(r)δρ(r')ρ

(1)(r')dr'∫

εn
(1)  = ψn

(0) Ĥ (1) ψn
(0)

What is         ,           ?  V̂ (1)
 

Eel
(2) ψ (1);ψ (0){ }  = ψn

(1) Ĥ (0)-εn
(0) ψn

(1)

n

occ
∑ + ψn

(1) V̂ (1) ψn
(0)

                                 + ψn
(0) V̂ (1) ψn

(1) + ψn
(0) V̂ (2) ψn

(0)

                             + 1
2

δ2EHxc
δρ(!r )δρ(!r')  ρ(1)(!r ) ρ(1)(!r')∫∫  d!r d!r'

or minimize 

ψ n
(1) (r)

ρ(1) (r)

Ĥ (1)

V̂ (2)

0 = ψm
(0) ψn

(1) for m ∈occupied set
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The potential and its 1st derivative 

V (0)(!r) =  - Zκ
!r-
!
Rκ

aaκ
∑

V (1)(!r)= ∂V(!r)
∂Rκ,α

a  = Zκ
!r-
!
Rκ

a 2  . 
∂ !r-
!
Rκ

a

∂uκ,α
a = - Zκ

!r-
!
Rκ

a 3  .  !r-
!
Rκ

a( )α

Derivative with respect to Rκα
a

Collective displacement with wavevector    
!q

Generalisation to pseudopotentials can be worked out ... 

V!q,κ,α
(1)  (!r)= ei!q

!
Ra

a
∑

∂V(!r)
∂Rκ,α

a  
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Factorization of the phase 

Suppose unperturbed system periodic 
 
If perturbation characterized by a wavevector : 
 

  
all responses, at linear order, will be characterized by a wavevector : 
  
 
 
Now, define related periodic quantities  
 
 
 
 
In equations of DFPT, only these periodic quantities appear:  
 
phases                   and                 can be factorized  
 
Treatment of perturbations incommensurate with unperturbed  system 
periodicity is thus mapped onto the original periodic system. 

 V
(0)(!r+

!
Ra ) =  V (0)(!r )

 V
(1)(!r+

!
Ra ) =  ei!q.

!
Ra  V (1)(!r )

 ρ
(1)(!r+

!
Ra ) =  ei!q.

!
Ra  ρ(1)(!r )

 ρ
(1)(!r ) =  e-i!q !r  ρ(1)(!r )

 e-i!q.!r

 
ψm,

!
k,!q

(1) (!r+
!
Ra ) =  ei(

!
k+ !q)

!
Ra  ψm,

!
k,!q

(1) (!r )

 
um,
!
k,!q

(1) (!r ) =  (NΩ0 )1/2  e-i(
!
k+ !q)!r  ψm,

!
k,!q

(1) (!r )

 e-i(
!
k+!q)!r
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Computing mixed derivatives  
How to get E j1 j2   from                          ? 
 

  

ψα
(0) , ψα

j1 , ψα
j2  

 

Eel
(2) ψ (1);ψ (0){ }  = ψn

(1) Ĥ (0)-εn
(0) ψn

(1)

n

occ
∑ + ψn

(1) V̂ (1) ψn
(0)

                                 + ψn
(0) V̂ (1) ψn

(1) + ψn
(0) V̂ (2) ψn

(0)

                             + 1
2

δ2EHxc
δρ(!r )δρ(!r')  ρ(1)(!r ) ρ(1)(!r')∫∫  d!r d!r'

Generalization to 

 

!Eel
j1 j2 ψ j1 , ψ j2 ;ψ (0){ }  = ψn

j1 Ĥ (0)-εn
(0) ψn

j2

n

occ
∑ + ψn

j1 V̂ j2 ψn
(0)

                                 + ψn
(0) V̂ j1 ψn

j2 + ψn
(0) V̂ j1 j2 ψn

(0)

                             + 1
2

δ2EHxc
δρ("r )δρ("r')  ρ j1 ("r ) ρ j2 ("r')∫∫  d"r d"r'

 
Eel

j1 j2  = 1
2
!Eel

j1 j2 + !Eel
j2 j1( )

with 

being a stationary expression, leading to the non-stationary expression 
Eel

j1 j2 ψ j1;ψ (0){ }  = ψn
j1 V̂ j2 ψn

(0)

n

occ
∑ + ψn

(0) V̂ j1 j2 ψn
(0)

Independent of             ψ j2



CEA Bruyères, January 24, 2019 
 

35 

Order of calculations in DFPT 
(1) Ground-state calculation 

 
(2) Do for each perturbation j1 

  use 
            using minimization of second-order energy 
          or 
             Sternheimer equation 
 Enddo 
 

(3) Do for each { j1, j2}    
 

  get E j1 j2   from 
 

 Enddo 
 

(4) Post-processing : from ‘bare’ E j1 j2
   to physical properties 

V (0)  →  ψn
(0) , n(0)  

ψn
(0) , n(0)

V j1  →  ψn
j1 , n j1  

ψn
(0) , ψn

j1 , ψn
j2  
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Phonon band structures 
from DFPT 
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From DFPT : straightforward, although lengthy (self-consistent calculation)  
to compute, for one wavevector : 
 

 Full band structure needs values for many wavevectors ... 
 

)(~
', qC kk
!

βα

XG, J.-C.Charlier, D.C.Allan, M.P.Teter, Phys. Rev. B 50, 13055 (1994) 

SiO2 alpha-quartz  

Phonon band structure 
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If IFCs were available, dynamical matrices 
could be obtained easily for any number of wavevectors 

IFCs are generated by 
 

= Fourier interpolation of  dynamical matrices. 

Cκα ,κ 'β (0, b) = (2π )3

Ω0

!Cκα ,κ 'β (!q)e−i!q⋅
!
Rb

d!q
BZ
∫

!Cκα ,κ 'β (!q) = Cκα ,κ 'β (0, b)ei!q⋅
!
Rb

b
∑

Fourier Interpolation  



CEA Bruyères, January 24, 2019 
 

39 

Cκα ,κ 'β (0, b) = (2π )3

Ω0

!Cκα ,κ 'β (!q)e−i!q⋅
!
Rb

d!q
BZ
∫

Key of the interpolation : replace the integral 

by summation on a few wavevectors (=“q-points”). 

xq

Yq

Fourier 

Grid of  (l,m,n) points  IFC’s in box of (l,m,n) periodic cells 

Numerical Fourier Interpolation  
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Fourier interpolation : Silicon  

Real space IFC’s calculated with 10 q-points 
Real space IFC’s calculated with 18 q-points 
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Interatomic force constants for silicon 

NN 

= total 

XG, Adv. in Quantum Chemistry 33, 225 (1999) 

IFC’s are short range, i.e. falling to zero quickly 
after the nearest-neighbors (NN). 
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Interatomic force constants for silica quartz 

NN 

NN 

= total 

= dipole-dipole 
= short - range 

Quartz 
3 Si 
6 O 

Si 

O 

XG, Adv. in Quantum Chemistry 33, 225 (1999) 

Long-ranged  
interatomic forces ! 
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Understanding the long-range behaviour 
When a ion with charge Z is displaced from its equilibrium position, a 
dipolar electric field is created. Its effect on other ions is described by a 
dipole - dipole interaction appearing in IFC’s. 

Suppose : homogeneous material with isotropic dielectric tensor        ,          
ions with charges Zk and Zk’ , then 

εδαβ

Long range decay  
of the IFC’s : 1/d3 

+ 

+ 

- 

- 

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−= 53

'
', 3),0(

d
dd

d
ZZbC kk

kk
βααβ

βα
δ

ε

kk
aa

kk Rrrd ττ −+=−= ''
0
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!Cκα ,κ 'β
na ("q → 0) = 4πe2

Ω0

Zκ ,αγ
∗ qγ

γ
∑ Zκ ',βv

∗ qv
v
∑

qγ εγ v
∞ qv

γ ,v
∑

 electronic dielectric tensor 
(electronic contribution to the screening of the charges) 

Born effective charge  
tensor for atom 

Effect of the long-range interaction 
The dynamical matrix exhibit a non-analytical (na) 
behavior, mediated by the long-wavelength electric field 

(Proportionality coefficient between polarisation and displacement, also 
between force and electric field) 

κ

 Both can be linked to a second derivative of total energy 

εγ v
∞ = δγν + 4π

∂Pγ

∂εν

Zκ ,αβ
∗ =Ω0

∂Pα

∂uκ ,β δ
!
E=0

=
∂Fκβ

∂εβ
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Dielectric properties 
from DFPT 
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Treatment of homogeneous electric field 
breaks the periodic boundary conditions ! 

 
One needs, for linear response : 

  
  

 
 
 
 
 

 Solution : 
 

 + the derivative with respect to k  
  can be computed within DFPT 

The treatment of homogeneous electric field is thus 
mapped onto the original periodic system. 
 
�

 
uc,k
!r uv,k            Pck

!r uv,k⎡⎣ ⎤⎦

 
Pck
!r uv,k⎡⎣ ⎤⎦  = Pck -i∇ !k uv,

!
k

⎡
⎣

⎤
⎦

periodic part 
of Bloch wf 

or 

conduction  
state 

valence  
state 

projection on  
conduction states 

Vext
(1) =
!
ε. !r
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εγ v
∞ = δγν + 4π

∂Pγ

∂εν

 electronic dielectric tensor 

Dielectric tensor : electronic part 

(Proportionality coefficient between polarisation and electric field) 

Linked to a second derivative of total energy 

Pγ = −
1
V

∂E
∂εγ

εγ v
∞ = δγν −

4π
V

∂2E
∂εγ ∂εν
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Zκ ,αβ

∗ = Ω0
∂Pα

∂uκ ,β δ
!
E=0

=
∂Fκβ

∂εβ

Born effective charge  
tensor for atom 

Born effective charges 

Proportionality coefficient between polarisation  
and displacement, also between force and electric field 

κ

 A mixed second derivative of total energy 

Zκ ,αβ
∗ = −

Ω0

V
∂2E

∂εα∂uκ ,β
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Interpolation Scheme 
Use Abinit to calculate                on a few Q-point. 

Subtract the dipole-dipole coupling                 

Calculate           and         

Use the real space IFC’s to interpolate at any Q-point. 

Add the dipole-dipole part for that Q-point 

)(~
', qC kk
!

βα

∗
αβ,kZ

∞
v,γε

)(~
', qCna
kk
!

βα

Fourier Transform to obtain                       CSR
kα ,k 'β (0,b)

Enforce sum-rules asr 

dipdip 

ifcflag 

Abinit 

Anaddb 

chneut 

Diagonalize dynamical matrix to find phonon frequencies  

Time-consuming 
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Phonon dispersion curves of ZrO2 
High - temperature : Fluorite structure 
(         , one formula unit per cell ) Fm3m

Supercell calculation + interpolation 
!   Long-range dipole-dipole 

  interaction not taken into account 

ZrO2 in the cubic structure at the equilibrium 
lattice constant a0 = 5.13 Å. 

DFPT (Linear-response) 
with      =   5.75 

    =  -2.86 
    =   5.75 

LO - TO splitting  11.99 THz 
  Non-polar mode is OK 

ZZr
*

Z0
*

ε∞

Wrong 
behaviour 

 (From Detraux F., Ghosez Ph. and Gonze X., Phys. Rev. Lett. 81, 3297 
(1998) - Comment to the Parlinski & al paper) 

(From Parlinski K., Li Z.Q., and Kawazoe Y., 
Phys. Rev. Lett. 78, 4063 (1997)) 
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Phonon dispersion relations. 
 
(a) Ideal cubic phase : unstable.  

(b) Condensations of the unstable  
phonon modes generate  
a (meta) stable orthorhombic phase 

MgSiO3 CUBIC 
(5at/cell) 

ORTHORHOMBIC 
(20at/cell) 

Analysis of instabilities 
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Electric field - atomic displacement  coupling 

Frequency - dependent dielectric tensor in the IR range 

  
εαβ (ω ) = εαβ

∞  + 
Zκ ,αγ

* um!q=0
* (κγ )

κγ
∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 Zκ ',βγ

* um!q=0 (κ 'γ ')
κ 'γ '
∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ω 2  - ωmq=0
2

m
∑

XG & C. Lee, Phys. Rev. B. 55 , 10355 (1997) 

Infrared (IR) reflectivity 

 
Rk (ω ) = εkk

1/2 (ω )−1
εkk

1/2 (ω )+1
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Infrared reflectivity of lithium iodate 

B. Van Troeye, Y. Gillet, S. Poncé and XG, Optical Materials 36, 1494 (2014) 
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Electro-optic coefficients 

LiIO3

Computed from DFPT from 3rd derivatives of electric enthalpy 
with respect to electric fields and atomic displacements 

B. Van Troeye, Y. Gillet, S. Poncé and XG, Optical Materials 36, 1494 (2014) 
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Piezoelectric coefficients 

3

LiIO 3

Computed from DFPT as a mixed 2nd derivative of  
electric enthalpy with respect to strain perturbation 
and electric field  

B. Van Troeye, Y. Gillet, S. Poncé and XG, Optical Materials 36, 1494 (2014) 
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Raman scattering intensities 

LiIO 3 

B. Van Troeye, Y. Gillet, S. Poncé and XG,  
Optical Materials 36, 1494 (2014) 

Computed from DFPT 
as a mixed 3nd derivative  
of electric enthalpy  
with respect to electric field and  
two atomic displacements 
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Thermodynamic 
properties 
from DFPT 
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Statistical physics : phonons = bosons 
Harmonic approximation :  
phonons are independent particles,  
obeying Bose-Einstein statistics  

Internal energy  

 
U phon = !ω

0

ωmax

∫ n(ω ) + 1
2

⎛
⎝⎜

⎞
⎠⎟

g(ω )dω

Energy of the harmonic oscillator Phonon density of states 

All vibrational contributions to thermodynamic properties,  
in the harmonic approximation, can be calculated  
in this manner.  

1

1)(
−

=
TkBe

n ωω
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Phonon density of states 
 
For each frequency channel,  
count the “number” of  
phonon modes 
 
 
 
m = index of pattern of vibration, 
     = a crystalline momentum  
(=> velocity of the vibrational wave) 

(c
m

) 
(cm-1) 

-quartz 

stishovite 

α

 
!q

)(
3
1)( ∑ −=

qm
qm

at
norm Nn
g ωωδω
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Helmoltz free energy and specific heat 

quartz 

stishovite Vibrational contribution to F : 

Vibrational contribution to Cv : 

TSUF −=

VVV
V T

FT
T
ST

T
UC ⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂
∂−=⎟

⎠
⎞⎜

⎝
⎛
∂
∂=⎟

⎠
⎞⎜

⎝
⎛
∂
∂= 2

2

ωωωω

dg
Tk

TkNnF
B

Bat )(
2

sinh2ln3
max

0
∫

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟⎠

⎞
⎜⎜⎝

⎛
=Δ

ωωωωω

dg
TkTk

kNnC
BB

BatV ∫ ⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

max

0

2

2

)(
2

csch
2

3
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T
n

B
VT mq

mq
mq mq ∂

∂
= ∑

)(1
3

)( ,
,

, ,

!

!

! !"

ω
γ

ω
α

)(ln
)(ln ,

, V
qm

qm ∂
∂

−=
!

!

ω
γ

Ab initio thermal expansion 

Alternative path : 
minimisation of 
free energy 
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The thermal expansion 
contribution 

Ab initio thermal expansion 

Linear thermal expansion coefficient 
of bulk silicon 

G.-M. Rignanese, J.-P. Michenaud and XG 
Phys. Rev. B 53, 4488 (1996) 
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Phonons : LDA ? GGA ? 
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... Lattice parameters from LDA are usually underestimated 

... GGA exists in many different flavors (e.g. PBE, PBEsol, AM05, ...), 
 PBE tends to overestimate, PBEsol is better, etc ... 

Effect of the choice of XC flavor on  
 phonon frequencies, dielectric tensor, Born effective charges  ? 

Exhaustive study : 
L. He et al, Phys. Rev. B89, 064305 (2014) 
 
Studied (cf LibXC) :  

 LDA, PBE, PBEsol, AM05, WC, HTBS 
 for Si, quartz, stishovite, zircon, periclase (MgO), copper 

 
Message : in general, at relaxed atomic parameters, LDA performs 
better ... 
 

 

DFPT : use it with LDA ? GGA-PBE ... ?  
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The thermal expansion 
contribution 

Gamma phonons of zircon 

L. He et al, Phys. Rev. B89, 064305 (2014) 
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The thermal expansion 
contribution 

Thermal expansion and T-dependent 
bulk modulus of copper 

L. He et al, Phys. Rev. B89, 064305 (2014) 
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Phonons in weakly 
bonded systems 
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For the last decade : interest in layered and other nanostructured 
materials.  Graphene, transition metal dichalcogenides, etc … 
- Interesting transport properties 
- Topological materials 
- Li or Na insertion in layered materials 

 
 

Layered materials 
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Local Density Approximation and Generalized Gradient Approximation 
only rely on local density, gradients, etc … 

 
 

Weak bonding : LDA ? GGA ? Beyond ? 

Exc n[ ] = n(r1)ε xc (r1;n)∫ dr1

Van der waals : intrinsically non-local,  
long range electron-electron correlation 
 
!New (classes of) functionals 
DFT-vDW-DF ; DFT-vDW-WF ; DFT-D2, -D3, -D3(BJ) ; … 

Exc
GGA n[ ] = n(r1)εxc

GGA (n(r1), ∇n(r1) )∫ dr1

Exc
LDA n[ ] = n(r1)εxc

LDA (n(r1))∫ dr1
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DFT+D3(BJ) 

Interlayer parameter d (nm) 
 
GGA(PBE)  0.44  
+D3(BJ)      0.337  
Exp.            0.334 

 

Primitive cell volume (nm^3) 
[Pbca - 4 Benzene rings] 
 
GGA(PBE)  >0.600  
+D3(BJ)      0.455  
Exp.            0.4625 
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Phonons in benzene crystal 
Phonons at Gamma 
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Temperature dependence 
of the electronic gap 
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Temperature dependence of electronic and 
optical properties 

peaks shift 
 
peaks broaden 

Bulk Silicon 
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Diamond : zero-point motion effect 

 
 

0.37 eV  
for the indirect band gap 
 
From  
M. Cardona, Solid State Comm. 133, 3 
(2005) 

How to compute it ? 
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Allen-Heine-Cardona theory 

Allen + Heine, J. Phys. C 9, 2305 (1976). 
Allen + Cardona, Phys. Rev. B 24, 7479 (1981) ; 27, 4760 (1983). 

εn
(2) = φn

(0) Ĥ (2) φn
(0) +

1
2

φn
(0) Ĥ (1) φn

(1) + (c.c)( )

Debye-Waller 
Antoncik 

Fan 
“self-energy” 

Electron-phonon  
interaction 
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Review Ad. AHC = Ad. Fan + rigid-ion Debye-Waller 
∂ε !kn

∂n!qj

=
∂ε !kn (Fan)

∂n!qj

⎛

⎝⎜
⎞

⎠⎟
+

∂ε !kn (DW RIA )
∂n!qj

⎛

⎝⎜
⎞

⎠⎟

∂ε !kn (Fan)
∂n!qj

= 1
ω !qj

ℜ
κaκ 'bn '
∑

φ !kn ∇κaHκ φ !k+ !qn ' φ !k+ !qn ' ∇κ 'bHκ ' φ !kn

ε !kn − ε !k+ !qn '

ξκa (!qj)ξκ 'b(− !qj)
Mκ Mκ '

eiq.(Rκ 'b−Rκa )

∂ε !kn (DW RIA )
∂n!qj

= − 1
ω !qj

ℜ
κaκ 'bn '
∑

φ !kn ∇κaHκ φ !kn ' φ !kn ' ∇κ 'bHκ ' φ !kn

ε !kn − ε !kn '

× 1
2

ξκa (!qj)ξκb(− !qj)
Mκ

+ ξκ 'a (!qj)ξκ 'b(− !qj)
Mκ '

⎛
⎝⎜

⎞
⎠⎟

Good :  only first-order electron-phonon matrix elements are needed 
(+ standard ingredients from first-principles phonon/band structure 
calculations) ; no supercell calculations  
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DFT T-dependent bandgaps : diamond 

S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete & XG, J. Chem. Phys. 143, 102813 (2015) 
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DFT T-dependent band structure 

Diamond  0 Kelvin 
(incl. Zero-point motion) 
 
Note the widening of 
the bands = lifetime 

S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete & XG, J. Chem. Phys. 143, 102813 (2015) 
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DFT T-dependent band structure 

Diamond  300 Kelvin 
 
 
Note the widening of 
the bands = lifetime 

S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete & XG, J. Chem. Phys. 143, 102813 (2015) 
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DFT T-dependent band structure 

Diamond  900 Kelvin 
 
 
Note the widening of 
the bands = lifetime 

S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete & XG, J. Chem. Phys. 143, 102813 (2015) 
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DFT T-dependent band structure 

Diamond  1500 Kelvin 
 
 
Note the widening of 
the bands = lifetime 

S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete & XG, J. Chem. Phys. 143, 102813 (2015) 
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DFT + perturbative phonons + 
    GW + frozen-phonon in supercells 

G. Antonius, S. Poncé, P. Boulanger, M. Côté & XG, Phys. Rev. Lett. 112, 215501 (2014) 

Zero-point motion 
in DFT :  
0.4 eV 
for the direct gap 

Zero-point motion 
in DFT+GW :  
0.63 eV 
for the direct gap, 
in agreement 
with experiments 
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ZPR for 28 materials: importance of non-
adiabatic effects for IR active materials 

A. Miglio, V. Brousseau, M. Côté, G. Antonius, Y.-H. Chan, M. GIantomassi & XG, in preparation 

In red: ZPR from 
adiabatic supercell 
calculations.  
Wide spread of discrepancies 

In blue: ZPR from 
non-adiabatic AHC 
calculations. 
Much better agreement, 
within 20% 
except for two materials 
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Band gap: comparison with experiment 

A. Miglio, V. Brousseau, M. Côté, G. Antonius, Y.-H. Chan, M. GIantomassi & XG, in preparation 

Lozanges: G0W0 
(non-self-consistent GW) 
up to 40% underestimation 
 
Squares: scGWeh 
(self-consistent GW with  
electron-hole interaction).  
Slight overestimation, 
except ZnS, ZnO, CdS.  

In blue: scGWeh + ZPR 
from non-adiabatic AHC 
calculations or Exp. 
Within 4% except for 3 
materials 
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Summary 
-  Phonon eigenmodes and frequencies:  
   solutions of eigenproblem from dynamical matrices 
-  Density-Functional Perturbation Theory : ideal  
      for accurate computation of dynamical matrices 
-  Interatomic force constants for polar insulators:  
      long ranged due to dipole-dipole interaction 
-  Response to homogeneous electric field within  DFPT  

 => dielectric tens., Born eff. charges, piezoelectricity. 
-  Fourier interpolation + treatment of  
 dipole-dipole interaction = effective interpolation  
of dynamical matrices => phonon band structures. 
- Phonon band structures easily  
    computed for insulators, metals, ... 
- Third-order properties are also accessed :  
        electro-optic, Raman, …  
-Thermodynamics (specific heat, thermal expansion ...) 
- New functionals : OK for DFPT in weakly bonded systems 
- Gap: temperature dependence, zero-point renormalization. 
 
     
 

 


