DE LA RECHERCHE À L'INDUSTRIE

DFPT vs TDEP

Boris Dorado

CEA, France

www.cea.fr

Abinit School 2019

- > Phonons in a nutshell: compute derivatives of the total energy. Can be analytical or numerical.
- > Analytical: solve the Sternheimer equation (aka the « derivative » of the Schrödinger equation).
 - → Density Functional Perturbation Theory, DFPT (Baroni *et al.*, Rev. Mod. Phys. **73**, 515 (2001))
- > Numerical: perform finite differences.
 - \rightarrow Finite displacements.
- > DFPT:
 - Pros:
 - ♦ Analytical \rightarrow most accurate.
 - ♦ Calculations on primitive unit cells \rightarrow fastest.
 - ◆ Phonons calculated analytically on any **q** point → not size dependent.
 - ♦ No size dependency \rightarrow defects, alloys, etc.
 - Cons:
 - * The maths are ugly \rightarrow hinders implementation (electron correlations, spin-orbit coupling, etc.)
 - * No temperature effects \rightarrow extrapolation to finite T with (quasi)harmonic approximation.
 - Not very useful for phases that are dynamically unstable at OK.

DFPT vs TDEP

> Finite displacements:

- Pros:
 - Conceptually simple: possible with any *ab initio* code.
 - Finite temperature effects (molecular dynamics)
- Cons:
 - ♦ Numerical \rightarrow less accurate than DFPT.
 - ♦ Primitive cell → Γ point only. Other **q** points require (very) large supercells.
 - Supercell is be mapped back onto the primitive cell → perfect crystals or substitutional defects.
 - * Ab Initio Molecular Dynamics (AIMD) can take months \rightarrow computationally demanding.