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Jones and Gunnarsson, Density Functional Theories, Review of Modern Physics, 1989
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Yang and Parr, Density-Functional Theory of Atoms and Molecules, Oxford University
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Dreizler and Gross, Density Functional Theory, an approach to the quantum many
Body problem, Springer, 1990
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What is a functional ?

A function f maps one number x to one number y.

y = f(x) example: y = f(x) = x2

A functional A maps one function f to one number y.

y = A[f(x)] example: y = A[f(x)] =

∫
dxf(x)2
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A functional derivative ?

Functional derivative:
Let’s modify the function f by a tiny increase δf localized at x0 : δf = εδ(x− x0).

Let’s now evaluate the variation of A[f(x)] =
∫
dxf(x)2:

A[f(x) + δf ]−A[f(x)] =

∫
dx[f(x) + εδ(x− x0)]2 − f(x)2

=

∫
dx2f(x)εδ(x− x0) = 2εf(x0)

More generally, if A[f(x)] =
∫
dxg(f(x)) where g is a function, one have:

A[f(x) + δf ]−A[f(x)] = εg′(f(x0))

The functional derivative is the variation of A divided by ε.

δA

δf(x0)
=
A[f(x) + δf ]−A[f(x)]

ε
= g′(f(x0))
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How to compute functional derivatives

Functional derivatives of complex functionals can be computed just by a simple
derivation, using at the end the simple rule

δf(x)

δf(x′)
= δ(x− x′)

Example 1: A[f(x)] =
∫
dxg(f(x))

δA

δf(x0)
=

∫
dx
δg(f(x))

δf(x0)

=

∫
dx
dg(f(x))

df(x)

δf(x)

δf(x0)

=

∫
dxg′(f(x))δ(x− x0)

= g′(f(x0))

We recover the previous result
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How to compute functional derivatives (2)

Example 2: the classical energy of a distribution of charge

EHartree[n(r)] =
1

2

∫
drdr′

n(r)n(r′)

|r− r|′

δE

δn(r0)
=

1

2

∫
drdr′

δ(n(r)n(r′))

δn(r0)

1

|r− r′|

=
1

2

∫
drdr′

[
δn(r)

δn(r0)
n(r′) + n(r)

δn(r′)

δn(r0)

]
1

|r− r′|

=
1

2

∫
drdr′

[
δ(r− r0)n(r′) + n(r)δ(r′ − r0)

] 1

|r− r′|

=
1

2

[∫
dr′n(r′)

1

|r0 − r′|
+

∫
drn(r)

1

|r− r0|

]
=

∫
drn(r)

1

|r0 − r|
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The many body Hamiltonian and wavefunction

In the Born Oppenheimer approximation, the electronic Hamiltonian is:

H(r1, r2.....rN ) =
N∑
i=1

[−
1

2
∇2

ri
+ vext(ri)] +

1

2

∑
i6=j

1

|ri − rj |

H = T + Vne + Vee

vext is the external potential (due to nuclei).

The eigenvectors are normalized wavefunctions

Ψ(r1, r2, ....rN )

which depends on 3N spatial and N spin coordinates. It is a quantity that
contains a huge amount of information.
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The electronic density from the many body wavefunction

The electronic density can be written as the expectation value of the density
operator n̂(r) =

∑N
i=1 δ(r− ri).

n(r) = 〈Ψ|n̂(r)|Ψ〉

=

∫ ∫ ∫
...

∫
dr1dr2dr3...drN

∣∣∣Ψ(r1, r2, r3, ..., rN )
∣∣∣2 [ N∑

i=1

δ(r− ri)

]

=
N∑
i=1

∫ ∫ ∫
...

∫
dr1dr2dr3...drN

∣∣∣Ψ(r1, r2, r3, ..., rN )
∣∣∣2δ(r− ri)

=
N∑
i=1

∫
...

∫ ∫
...

∫
dr1...dri−1dri+1...drN

∣∣∣Ψ(r1, ..., ri−1, r, ri+1..., rN )
∣∣∣2

= N

∫ ∫ ∫
dr2dr3...drN |Ψ(r, r2, r3, ..., rN )|2

because of the antisymmetry of the wavefunction.
The integral of the density is the number of electron

N =

∫
n(r)dr
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The total energy from the many body wavefunction

The variational theorem shows that the ground state (GS) energy EGS of the system
can be obtained by minimization of the energy as a function of Ψ.

EGS = min
Ψ
〈Ψ|H|Ψ〉 = min

Ψ
[〈Ψ|T |Ψ〉+ 〈Ψ|

N∑
i=1

vext(ri)|Ψ〉+ 〈Ψ|Vee|Ψ〉]

and 〈Ψ|
N∑
i=1

vext(ri)|Ψ〉 =

∫
..

∫
dr1...drN

∣∣∣Ψ(r1, r2, r3, ..., rN )
∣∣∣2 [ N∑

i=1

vext(ri)

]

=
N∑
i=1

∫
..

∫
dr1...drN

∣∣∣Ψ(r1, ....., ri, ..., rN )
∣∣∣2vext(ri)

=
N∑
i=1

∫
..

∫
dr1...drN

∣∣∣Ψ(ri, ....., r1, ..., rN )
∣∣∣2vext(ri)

=
N∑
i=1

∫
..

∫
dr1...drN

∣∣∣Ψ(r1, ....., ri, ..., rN )
∣∣∣2vext(r1)

= N

∫
..

∫
dr1...drN

∣∣∣Ψ(r1, r2, r3, ..., rN )
∣∣∣2vext(r1)

=

∫
drvext(r)n(r)

using as before the antisymmetry of the wavefunction.
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The total energy from the many body wavefunction

Thus

EGS = min
Ψ
〈Ψ|H|Ψ〉 = min

Ψ
[〈Ψ|T |Ψ〉+

∫
drvext(r)n(r) + 〈Ψ|Vee|Ψ〉]
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Without electronic interactions

Without electronic interactions, the Hamiltonian would be a sum of one particle
hamiltonian.

H(r1, r2.....rN ) =
N∑
i=1

[−
1

2
∇2

ri
+ vext(ri)]

In this case, the many body wavefunction can be written as a product of one
particle wavefunctions φi(ri):

Ψ(r1, r2, ....rN ) =
∏
i

φi(ri)

The density can be written as the sum of probability density of each electron.

n(r) =

∫ ∫ ∫
...

∫
dr1dr2dr3...drN

∣∣∣Ψ(r1, r2, r3, ..., rN )
∣∣∣2 [ N∑

i=1

δ(r− ri)

]

n(r) =

∫ ∫ ∫
...

∫
dr1dr2dr3...drN

∣∣∣∏
j

φj(rj)
∣∣∣2 [ N∑

i=1

δ(r− ri)

]

n(r) =
N∑
i=1

∫
dri

∣∣∣φi(ri)∣∣∣2δ(r− ri)×
∏
j 6=i

1 =
N∑
i=1

|φi(r)|2
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Without electronic interactions

The total energy is :

Eno interaction
GS = 〈Ψ|H|Ψ〉

= 〈
∏
j

φj(rj)|H|
∏
j

φj(rj)〉

= 〈
∏
j

φj(rj)

∣∣∣∣∣
N∑
i=1

[−
1

2
∇2

ri
+ vext(ri)]

∣∣∣∣∣∏
j

φj(rj)〉

= −
1

2

∑
i

∫
φ∗i (r)∇2φi(r)dr +

∑
i

∫
drvext(r)|φi(r)|2

= −
1

2

∑
i

∫
φ∗i (r)∇2φi(r)dr +

∫
drvext(r)n(r)

In this case, the many body Schrödinger equation can be decomposed into N one
electron equations :

[−
1

2
∇2 + vext]φi(r) = εiφi(r)
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The Hartree approximation

Hartree (1927) proposed to keep the electronic interaction but to write the many
body wavefunction as the product of one particles wavefunction.

Ψ(r1, r2, ....rN ) =
∏
i

φi(ri)

The total energy 〈Ψ|H|Ψ〉 can be written as

EHartree
GS = −

∑
i

∫
φ∗i (r)

∇2

2
φi(r)dr︸ ︷︷ ︸

Kinetic

+

∫
drvext(r)n(r)

+
1

2

∫ ∫
drdr′

∑
i6=j |φi(r)|2|φj(r′)|2

|r− r|′︸ ︷︷ ︸
electron electron interaction

If one uses the variational principle to compute the ground state energy, one finds
that the one particle wavefunctions are solution of the Hartree equation:[

−
1

2
∇2 + vext(r) +

∫
dr′

1

|r− r′|
∑
j 6=i
|φj(r′)|2

]
φi(r) = εiφi(r)
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The Hartree Fock approximation

As electrons are fermions, the Hartree many body wavefunction should be
antisymmetrized to obtain:

Ψ(r1, r2, ....rN ) =
1
√
N !

∣∣∣∣∣∣∣∣∣
φ1(r1) φ1(r2) · · · φ1(rN )
φ2(r1) φ2(r2) · · · φ2(rN )

...
...

. . .
...

φN (r1) φN (r2) · · · φN (rN )

∣∣∣∣∣∣∣∣∣
If one uses this wavefunction to compute the ground state energy, one finds:

EHartree Fock
GS = −

1

2

∑
i

∫
φ∗i (r)∇2φi(r)dr +

∫
drVext(r)n(r) + EHartree[n(r)]

−
1

2

∑
i6=j,σ

∫∫
drdr′

(
φ∗σi (r)φσj (r)φσi (r′)φ∗σj (r′)

|r− r′|

)

The last term is the Fock energy which comes from the antisymmetry of the
wavefunctions. It explains in particular the first Hund’s rule.

cf also the lecture of Eric Bousquet on Magnetism.
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How to go beyond

The configuration of interaction (CI) method consists of using all possible
determinants starting from the occupied and empty eigenfunctions of the Hartree
Fock equation.

Ψ(r1, r2, ....rN ) =
M∑

i1,i2,...iN=1

Ci1,i2,...iN

∣∣∣∣∣∣∣∣∣
φi1 (r1) φi1 (r2) · · · φi1 (rN )
φi2 (r1) φi2 (r2) · · · φi2 (rN )

...
...

. . .
...

φiN (r1) φiN (r2) · · · φiN (rN )

∣∣∣∣∣∣∣∣∣
The coefficients Ci1,i2,...iN can be computed only for small systems. Indeed, the
number of coefficients is equal to M !

N !(M−N)!
, where M is the dimension of the

Hilbert space.

Intractable for solid state physics and large molecules.
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DFT: density functional theory ?

What is it ?

The total energy is a functional of the density ?

A trial density or the density of the GS ?
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DFT: First Hohenberg and Kohn Theorem (1964)

For a system with a potential vext(r), One can in theory solve the Hamiltonian:

H(r1, r2.....rN ) =
N∑
i=1

[−
1

2
∇2

ri
+ vext(ri)] +

1

2

∑
i6=j

1

|ri − rj |

and find the ground state wavefunction ΨGS(r1, r2, ..., rN ):

H(r1, r2.....rN )Ψ(r1, r2, ....rN ) = EΨ(r1, r2, ....rN )

From the wavefunction, the ground state density nGS(r) can be computed. It is
unique

n(r) = 〈Ψ|n̂(r)|Ψ〉

vext(r)
Schrödinger

ΨGS(r1, r2, ..., rN ) nGS(r)

Thus the ground state density is a functional of the external potential.

nGS(r) = n̂(r)[vext(r)]
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DFT: First Hohenberg and Kohn Theorem (1964)

The first Hohenberg Kohn Theorem establishes the inverse relation:
For any system of interacting particles in an external potential vext(r), the
potential vext(r) is determined uniquely, except for a constant, by the ground state
particle density n(r).

n(r)
HK

vext(r)

Thus the external potential is a functional of the ground state density.

vext(r) = v̂ext(r)[n(r)]

As the wavefunction ΨGS is a functional of vext(r), it is also a functional of
the density.

ΨGS(r1, r2, ..., rn) = Ψ̂[n(r)]

n(r)
HK

vext(r)
Schrödinger

ΨGS(r1, r2, ...., rN )
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DFT: Second Hohenberg and Kohn Theorem

A universal functional for the energy Ê[n(r)] in terms of the density n(r) can be
defined, valid for any external (fixed) potential vext(r).

From the many body wavefunction, one saw previously that:

E vext(r)[Ψ] = 〈Ψ|H|Ψ〉 = 〈Ψ|T |Ψ〉+

∫
drvext(r)n(r)[Ψ] + 〈Ψ|Vee|Ψ〉

The second Hohenberg theorem says that:

E vext(r)[n(r)] = 〈Ψ[n(r)]|T |Ψ[n(r)]〉+
∫
drvext(r)n(r)+ 〈Ψ[n(r)]|Vee|Ψ[n(r)]〉

where Ψ[n(r)] has to be understood as Ψ[vext[n(r)]].

Thus, one has the following universal functional that does not depend on vext:

FHK[n(r)] = 〈Ψ[n(r)]|T |Ψ[n(r)]〉+ 〈Ψ[n(r)]|Vee|Ψ[n(r)]〉 = T [n(r)] +Eee[n(r)]
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DFT: Second Hohenberg and Kohn Theorem (2)

For any particular fixed vext(r), the exact ground state energy of the system is the
global minimum value of the functional, and the density n(r) that minimizes the
functional is the exact ground state density nGS(r).

From the variational principle, one saw previously that:

EGS vext(r) = min
Ψ
〈Ψ|H|Ψ〉 = min

Ψ

[
〈Ψ|T |Ψ〉+

∫
drvext(r)n(r)[Ψ] + 〈Ψ|Vee|Ψ〉

]

As Ψ is a functional of the density n(r), one has the second part of the
Hohenberg-Kohn theorem

EGS vext(r) = min
n(r)

Evext(r)[n(r)]

= min
n(r)

[
〈Ψ[n(r)]|T |Ψ[n(r)]〉+

∫
drvextn(r) + 〈Ψ[n(r)]|Vee|Ψ[n(r)]〉

]
This is the variational theorem for DFT.
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Kohn Sham method

Kohn et Sham introduced a fictuituous non interacting system with the same
density as the interacting system.

n(r) =
N∑
i=1

|φi(r)|2

The universal functional Hohenberg and Kohn can be decomposed as

FHK[n(r)] = Ts[n(r)] + EHartree[n(r)] + Exc[n(r)]

Ts[n(r)] is the non interacting kinetic energy functional for the fictuituous system

TS [n(r)] = −
∑
i

∫
φ∗i (r)

∇2

2
φi(r)dr

EHartree[n(r)] is the Hartree energy (or electrostatic energy).

EHartree[n(r)] =
1

2

∫ ∫
drdr′

n(r)n(r′)

|r− r′|
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The exchange and correlation energy

Exc[n(r)] is defined by

Exc[n(r)] = FHK[n(r)]− Ts[n(r)]− EHartree[n(r)]

and is called the exchange and correlation energy and is unknown.

Using the expression of FHK[n(r)] = T [n(r)] + Eee[n(r)], one can rewrite
Exc[n(r)] as:

Exc[n(r)] = T [n(r)]− Ts[n(r)] + Eee[n(r)]− EHartree[n(r)]

Exc[n(r)] thus contains both a part coming from electron interactions and a part
coming from the difference between the exact kinetic energy and the kinetic
energy of the fictuituous non interacting system.
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The Kohn Sham Equations

The total energy expression as a function of φ(r) is

Evext [n(r)] = −
∑
i

∫
φ∗i (r)

∇2

2
φi(r)dr+

∫
drvext(r)n(r)+EHartree[n(r)]+Exc[n(r)]

and can be minimized.
One obtains the one electron Kohn-Sham Equations[

−
∇2

2
+ VKS(r)

]
φi(r) = εiφi(r)

The effective Kohn Sham potential VKS(r) is defined as the functional derivative
of the last three terms of the energy:

VKS(r) = vext(r) +

∫
dr′

n(r′)

|r− r′|
+ vxc(r)

The exchange and correlation potential vxc(r) is

vxc(r) =
δExc[n(r)]

δn(r)
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The self-consistency over electronic density

The Kohn Sham equation are:[
−
∇2

2
+ VKS(r)

]
φi(r) = εiφi(r)

The effective Kohn Sham potential VKS(r) depends on the density n(r).

VKS(r) = vext(r) + vHartree[n(r)](r) + vxc[n(r)](r)

The density n(r) can be compute from wavefunctions on the φi(r).

n(r) =
N∑
i=1

|φi(r)|2

The Kohn Sham equations for the wavefunctions can thus be solved
self-consistently.
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The self-consistency over electronic density

The Kohn Sham equation are:[
−
∇2

2
+ VKS[n(r)](r)

]
φi(r) = εiφi(r)

The effective Kohn Sham potential VKS(r) depends on the density n(r).

VKS[n(r)](r) = vext(r) + vHartree[n(r)](r) + vxc[n(r)](r)

The density n(r) can be compute from wavefunctions on the φi(r).

n(r) =
N∑
i=1

|φi(r)|2

The Kohn Sham equations for the wavefunctions can thus be solved
self-consistently.
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The DFT Loop

Solve Kohn Sham Equations[
−∇

2

2
+ VKS[n(r)](r)

]
φi(r) = εiφi(r)

Use Kohn Sham functions to built density
n(r) =

∑N
i=1 |φi(r)|2

Compute Kohn Sham potential from density
VKS[n(r)](r) = vext(r) + vHartree[n(r)](r) + vxc[n(r)](r)
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The DFT Loop

Solve Kohn Sham Equations[
−∇

2

2
+ VKS[n(r)](r)

]
φi(r) = εiφi(r)

Use Kohn Sham functions to built density
n(r) =

∑N
i=1 |φi(r)|2

Compute Kohn Sham potential from density
VKS[n(r)](r) = vext(r) + vHartree[n(r)](r) + vxc[n(r)](r)

The Kohn Sham Equations are solved by diagonalisation of the Hamiltonian
One very convenient and simple way to express the equations is to express the
wavefunctions in a plane wave basis and use Fourier transformation:
φi(r) =

∑
G ciGeiGr

cf next lecture of F. Jollet.
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The DFT Loop

Solve Kohn Sham Equations[
−∇

2

2
+ VKS[n(r)](r)

]
φi(r) = εiφi(r)

Use Kohn Sham functions to built density
n(r) =

∑N
i=1 |φi(r)|2

Compute Kohn Sham potential from density
VKS[n(r)](r) = vext(r) + vHartree[n(r)](r) + vxc[n(r)](r)

The density is the sum of occupied wavefunctions
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The DFT Loop

Solve Kohn Sham Equations[
−∇

2

2
+ VKS[n(r)](r)

]
φi(r) = εiφi(r)

Use Kohn Sham functions to built density
n(r) =

∑N
i=1 |φi(r)|2

Compute Kohn Sham potential from density
VKS[n(r)](r) = vext(r) + vHartree[n(r)](r) + vxc[n(r)](r)

The density used to compute the KS potential can be mixed.

The simplest solution: nnew = αnnew + (1− α)nold

When |nnew − nold| < tolerance, the cycle is stopped.
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Expressions for the total energy

We use the expression of the total energy from Hohenberg and Kohn

E[n(r)] = FHK[n(r)] +

∫
drvext(r)n(r)

Then we use the expansion of FHK which defines Exc

FHK[n(r)] = Ts[n(r)] + EHartree[n(r)] + Exc[n(r)]

Thus

E[n(r)] = Ts[n(r)] + EHartree[n(r)] + Exc[n(r)] +

∫
drvext(r)n(r)

Then we use the definition of Ts:

Ts[n(r)] = −
∑
i

∫
φ∗i (r)

∇2

2
φi(r)dr
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Expressions for the total energy

The total energy writes:

Evext [n(r)] = −
∑
i

∫
φ∗i (r)

∇2

2
φi(r)dr+

∫
drvext(r)+EHartree[n(r)]+Exc[n(r)]

It can also be written as a sum over Kohn-Sham eigenvalues εi minus double
counting terms:

Evext [n(r)] =
N∑
i=1

εi − EHartree[n(r)] + Exc[n(r)]−
∫
drvxc(r)n(r)

It can be demonstrated using the fact that:
N∑
i=1

εi =
∑
i

〈φi| −
∇2

2
+ Vext(r) + vHartree(r) + vxc(r)|φi〉

N∑
i=1

εi = −
∑
i

∫
φ∗i (r)

∇2

2
φi(r)dr +

∫
drvext(r)n(r)

+ 2EHartree[n(r)] +

∫
drvxc(r)n(r)

These two expressions are implemented in ABINIT.
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From total energy: forces

Forces, stresses can be obtained by differentiation of the total energy

Phonons can be obtained as the second derivative of the total energy

cf lecture by G. Geneste about relaxation effects and lecture by X. Gonze and B.
Dorado about phonons with DFPT.
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The Local Density Approximation (LDA)

In the local Density Approximation, one writes the exchange and correlation
energy as

ELDA
xc [n(r)] =

∫
n(r)εHEG

xc (n̄ = n(r))dr

where εHEGxc (n̄) is the exchange and correlation energy per electron in the
homogeneous electron gas (HEG) of density n̄

As each point r in the integral, the expression uses the exchange correlation
energy of an HEG of density n̄ = n(r).

The exchange part of the functional can be calculated analytically.

The correlation part can be obtained numerically using quantum Monte Carlo
calculations.
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The Generalized-Gradient Approximation.

A natural progression beyond LDA could be to include gradient of the density in
the functional.

EGGA
xc [n(r)] =

∫
f(n(r),∇n(r))dr

A large number of variants exists based on the gradient and also on various
physical sum rules. (Perdew Wang 1991, Perdew Burke and Ernzerhof 1996...).

The LDA and GGA functionals gives a surprisingly good description of cohesive
and structural properties of solids made from elements of the first lines of the
periodic table.
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Beyond LDA and GGA

DFT is exact for ground state properties. But which functional should we used ?

Spin density functional theory: (e.g LSDA). Allows to describe more easily spin
polarized systems.

Hybrid functionals: Add a portion of Hartree Fock exchange energy to the GGA
functional→ Partially correct the self interaction error of LDA and GGA.

LDA+U, GGA+U: Add explicitly interactions between strongly correlated electrons
(transition metal/lanthanides/actinides).

Van der Walls functionals (Semi empirical or ab initio).

More that 250 functionals are available in ABINIT thanks to libxc.
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Beyond DFT

DFT only describes ground state properties. Excitations can be described by other
methods

For weakly correlated systems, excitations can be described by e.g GW, or
TDDFT.

For strongly correlated systems, DFT+DMFT allows for the description of
excitations and structural properties.
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