Magnetism

Eric Bousquet

University of Liège

eric.bousquet@uliege.be

ABINIT Hands-on 2019

Outline

- Origin of magnetism:
 - A bit of history
 - Inside an atom
 - Between 2 atoms
 - Interaction with ligands
 - Interaction through ligands
 - Spin-orbit coupling and spin orientation
- Collinear magnetism in DFT
- Non-collinear magnetism in DFT
- Constrained magnetic moments
- Finite magnetic field

1819: Hans Christian Oersted

First experimental evidence of the link between electric current and magnetic field.

1820: Jean-Baptiste Biot and Felix Savart

Mathematical expression of the magnetic field generated by an electric current flowing through a wire.

1895: Pierre Curie

Effect of temperature on paramagnetic susceptibilities (Curie's law).

1907: Pierre-Ernest Weiss

First microscopic model to explain magnetism (molecular field).

1930: Louis Néel

Extension of Weiss model to antiferromagnetism and ferrimagnetism.

However, no explanation of the high temperature magnetic phase transitions.

Pauli, Dirac, Heisenberg

Magnetism cannot be explained without quantum mechanics!

Origin of magnetism: Inside an atom

2 electrons with the same *l* but different m_l (Φ_a and Φ_b orbitals):

$$H = H_1 + H_2 + H_{12}$$

$$H_1 = -\frac{\hbar^2}{2m}\nabla_1^2 - \frac{Ze^2}{4\pi\varepsilon_0 r_1}$$

$$H_2 = -\frac{\hbar^2}{2m}\nabla_2^2 - \frac{Ze^2}{4\pi\varepsilon_0 r_2}$$

$$H_{12} = -\frac{e^2}{4\pi\varepsilon_0 r_{12}}$$

Origin of magnetism: Inside an atom

Each electron can have spin up and down states \mapsto 4 spin-orbitals:

 $\left|\uparrow\uparrow\right\rangle \quad \left|\uparrow\downarrow\right\rangle \quad \left|\downarrow\uparrow\right\rangle \quad \left|\downarrow\downarrow\right\rangle$

Such that we have the following Hamiltonian:

$$H = E_1 + E_2 + \begin{pmatrix} K_{ab} - J_{ab} & 0 & 0 & 0 \\ 0 & K_{ab} & -J_{ab} & 0 \\ 0 & -J_{ab} & K_{ab} & 0 \\ 0 & 0 & 0 & K_{ab} - J_{ab} \end{pmatrix}$$

where we have the Coulomb and Exchange integrals:

$$K_{ab} = \frac{e^2}{4\pi\varepsilon_0} \int d^3 r_1 \int d^3 r_2 \frac{|\phi_a(r_1)|^2 |\phi_b(r_2)|^2}{|r_{12}|} (=U)$$
$$J_{ab} = \frac{e^2}{4\pi\varepsilon_0} \int d^3 r_1 \int d^3 r_2 \frac{\phi_a^*(r_1)\phi_b(r_1)\phi_b^*(r_2)\phi_a(r_2)}{|r_{12}|}$$

Origin of magnetism: Inside an atom

The diagonalization gives a triplet (FM) and a singlet (AFM) states:

The FM triplet is the ground state.

The Hamiltonian can be re-written in the Heisenberg form:

$$H = constant - 2J_{ab}\mathbf{S}_1 \cdot \mathbf{S}_2$$

To have $\langle S \rangle \neq 0$ one needs partially filed orbitals ex: d^n orbitals

Hund's rules

Most of the crystals are magnetic because they contain Transition-Metal and Rare Earth atoms (d and f electrons partially filed)

Origin of magnetism: Interaction with ligands

Atom in a solid: Crystal Field Splitting

Atomic d (or f) orbitals splitted due to the surrounding atoms. Hund's rules still apply.

Origin of magnetism: Interaction with ligands

High-spin and low-spin configurations:

Depending on the size of Δ_{CF} relative to U.

Origin of magnetism: Between two atoms

The FM state is lower in energy inside an iolated atom (Hund's rules). This is not necessarily the case between atoms, in H_2 molecule:

Similar Heisenberg Hamiltonian: $H = constant - 2J_{ab}\mathbf{S}_1 \cdot \mathbf{S}_2$ but with the 1*s* orbital overlap between the 2 atoms: J < 0The singlet AFM state is lower in energy!

Origin of magnetism: Between two atoms

The hopping process reinforce the AFM state:

Origin of magnetism: Interaction through ligands

Atoms interacting through the ligands: Superexchange

from Stöhr and Siegmann, Magnetism, Springer 2006

Heisenberg picture still holds (localised electrons, $t \ll 1$): $H = JS_1S_2$

Spin-orbit coupling and spin orientations

Relativistic corrections gives an interaction between S and L:

In crystals, this term drives the easy/hard axis orientation of the spins It also drives the spin cantings (Dzyaloshinskii-Moriya interaction) For localised moments, the system can be reduced to an effective spin-spin interaction

2nd order Heisenberg model for localised magnetic moments:

$$H = -2\left[J\mathbf{S}\cdot\mathbf{S}' + \mathbf{D}\cdot(\mathbf{S} imes\mathbf{S}') + \mathbf{S}\cdot\mathbf{\Phi}\cdot\mathbf{S}'
ight]$$

- $J \mapsto$ Superexchange interaction (favors $S \parallel S'$)
- **D** \mapsto Dzyaloshinskii-Moriya interaction (favors $S \perp S'$)
- $\Phi \mapsto$ Single Ion Anisotropy (easy/hard spin orientation)

Magnetism in DFT: Collinear case

DFT based on the charge density $\rho(r)$

To enlarge DFT to (collinear) magnetism, decomposition of the density:

$$ho=
ho(\uparrow)+
ho(\downarrow)$$

The Hohenberg and Kohn theorem generalizes with an energy functional:

$$E = E[
ho(\uparrow),
ho(\downarrow)]$$

With 2 Kohn-Sham equations to be solved, one for each spin-channel σ :

$$(T + V_{Ri}(r) + V_{H}(r) + V_{xc,\sigma})\phi_{i\sigma}(r) = \varepsilon_{i\sigma}(r)$$

with

$$V_{xc,\sigma} = \frac{\delta E_{xc}[\rho(\uparrow),\rho(\downarrow)]}{\delta \rho_{\sigma}(r)}$$

Magnetism in DFT: Collinear case

Then minimizing the K-S equations we get the ground state with:

 $\rho = \rho(\uparrow) + \rho(\downarrow)$ and magnetization $m = \rho(\uparrow) - \rho(\downarrow)$

Supposing the magnetic moments are localised around the atoms (this is often the case for d and f electrons), one can compute magnetization on each atom (*prtdensph* input flag in ABINIT)

Example of Fe bulk BCC:

Integrated electronic and magnetization densities in atomic spheres:					
Note:	Diff(up-dn)	is a rough	approximation	of local magn	etic moment
Atom	Radius	up_density	dn_density	Total(up+dn)	Diff(up-dn)
1	2.00000	8.152787	5.919175	14.071962	2.233612
Sum:		8.152787	5.919175	14.071962	2.233612
Total	magnetizati	on (from the	atomic sphere	es):	2.233612
Total	magnetizatio	on (exact up	o - dn):		2.228468

about 2.23 μ_B .

Magnetism in DFT: Non-collinear case

Wave functions are described by spinors:

$$\phi_i(r) = \left(\begin{array}{c} \phi_{i\uparrow} \\ \phi_{i\downarrow} \end{array}\right)$$

Such as the density is a 2×2 matrix:

$$\rho = \begin{pmatrix} \rho^{\uparrow\uparrow} & \rho^{\uparrow\downarrow} \\ \rho^{\downarrow\uparrow} & \rho^{\downarrow\downarrow} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} n+m_z & m_x-im_y \\ m_x+im_y & n-m_z \end{pmatrix}$$

with *n* the electron density and m_i the magnetization density along the direction *i*

$$n(r) = \frac{1}{2} \operatorname{Tr} \rho(r) = \sum_{\alpha} \rho^{\alpha \alpha}(r) \qquad \qquad \mathbf{m}(\mathbf{r}) = \sum_{\alpha \beta} \rho^{\alpha \beta}(\mathbf{r}) \cdot \sigma_{\alpha \beta}$$

with the Pauli matrices $\sigma_{\alpha\beta} = (\sigma_x, \sigma_y, \sigma_z)$:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Magnetism in DFT: Non-collinear case

Kohn-Sham equations with spinors:

$$\sum_eta \mathcal{H}^{lphaeta} |\phi^eta_i
angle = arepsilon_i |\phi^lpha_i
angle$$

where the Hamiltonian is a 2×2 matrix:

$$H^{\alpha\beta} = T\delta_{\alpha\beta} + V(r)\delta_{\alpha\beta} + \int \frac{n(r')}{r-r'}dr'\delta_{\alpha\beta} + V^{\alpha\beta}_{xc}(r)$$

and:

$$V_{xc}^{\alpha\beta}(r) = \frac{\delta E_{xc}[\rho(r)]}{\delta \rho^{\alpha\beta}(r)}$$

 $\rho^{\alpha\beta}$ is diagonal when $m = m_z \mapsto$ collinear case.

Magnetism in DFT: Non-collinear case

One needs SOC to couple directions (space rotations) to the spins:

- controlled by so_psp flag for norm-conserving pseudopotential
- controlled by pawspnorb flag for PAW

(necessary to probe magnetic anisotropies or spin cantings)

Magnetization on each atom can also be estimated through *prtdensph* flag, example of Fe bulk BCC:

Integrated electronic and magnetization densities in atomic spheres: Note: this is a rough approximation of local magnetic moments Atom Radius Total density mag(x) mag(y) mag(z) 1 2.00000 14.078578 -0.000039 -0.000023 2.274108 Total magnetization (spheres) -0.000039 -0.000023 2.270315 Total magnetization (exact) -0.000039 -0.000023 2.270315 nsppol, nspinor and nspden input flags:

	nsppol	nspinor	nspden
Non-magnetic	1	1	1
Collinear FM	2	1	2
Collinear AFM	1	1	2
Non-Collinear	1	2	4

Initialize spinat = (m_x, m_y, m_z) for each atom,

(only spinat = (0, 0, m) for collinear calculations).

SOC coupling controlled by *so_psp* (norm-conserving) or *pawspnorb* for PAW (PAW SOC coupling amplitude can be artificially tuned with *spnorbscl* flag).

With SOC do not use time-reversal symmetry (*kptopt* = 3 or 4, nsym \neq 1 and *kptopt* =4 is under dev.).

 $YCrO_3$ has a distorted perovskite structure (*Pnma* space group) $YCrO_3$ is a non-collinear AFM (wFM and wAFM)

Collinear case of YCrO₃ (input)

natom 20 ntypat 3 znucl 39 24 8 typat 4*1 4*2 12*3 acell 5.518 7.54 5.247 Angstrom xred 0.07064 0.75000 0.48013 # Y 0.98013 # Y 0.42935 0.25000 0.57064 0.75000 0.01986 # Y 0.92935 0.25000 0.51986 # Y 0.00000 0.00000 0.00000 # Cr0.50000 0.00000 0.50000 # Cr 0.00000 0.50000 0.00000 # Cr 0.50000 0.50000 0.50000 # Cr 0.46054 0.75000 0.61179 # 0 0.03945 0.25000 0.11179 # 0 0.96054 0.75000 0.88820 # 0 0.53945 0.25000 0.38820 # 0 0.30409 0.55780 0.19616 # 00.19590 0.44219 0.69616 # 0 0.80409 0.94219 0.30383 # 0 0.69590 0.05780 0.80383 # 0 0.69590 0.44219 0.80383 # 0 0.80409 0.55780 0.30383 # 00.19590 0.05780 0.69616 # 0 0.30409 0.94219 0.19616 # 0

nspden 2 (Collinear) nsppol 1 (AFM) nspinor 1 12*0 # Y 0.0 0.0 5.0 # Cr1 (d³) 0.0 0.0 -5.0 # Cr2 (d³) 0.0 0.0 5.0 # Cr3 (d³) 0.0 0.0 5.0 # Cr4 (d³) 36*0 # 0

Collinear case YCrO₃ (output)

Integrated electronic and magnetization densities in atomic spheres:

Note:	Diff(up-dn)	is a rough	approximation	of local magn	etic moment
Atom	Radius	up_density	dn_density	Total(up+dn)	Diff(up-dn)
1	2.21000	4.011174	4.011174	8.022348	-0.000000
2	2.21000	4.011174	4.011174	8.022348	-0.000000
3	2.21000	4.011174	4.011174	8.022348	-0.000000
4	2.21000	4.011174	4.011174	8.022348	-0.000000
5	2.10818	7.280490	4.827179	12.107670	2.453311
6	2.10818	4.827179	7.280490	12.107670	-2.453311
7	2.10818	4.827179	7.280490	12.107670	-2.453311
8	2.10818	7.280490	4.827179	12.107670	2.453311
9	1.41465	2.281923	2.281923	4.563846	0.000000
10	1.41465	2.281923	2.281923	4.563846	0.000000
11	1.41465	2.281923	2.281923	4.563846	0.000000
12	1.41465	2.281923	2.281923	4.563846	0.000000
13	1.41465	2.273977	2.274262	4.548239	-0.000285
14	1.41465	2.274262	2.273977	4.548239	0.000285
15	1.41465	2.273977	2.274262	4.548239	-0.000285
16	1.41465	2.274262	2.273977	4.548239	0.000285
17	1.41465	2.273977	2.274262	4.548239	-0.000285
18	1.41465	2.274262	2.273977	4.548239	0.000285
19	1.41465	2.273977	2.274262	4.548239	-0.000285
20	1.41465	2.274262	2.273977	4.548239	0.000285
			67 690691	125 161262	0.000000
Sum:		01.500001		192.101303	-0.000000
Total	magnetizati	on (irom the	e atomic sphere	es):	-0.000000
Iotal	magnetizati	on (exact up	an:		-0.000000

Non-collinear case of YCrO₃ (input with spins along z)

natom 20 ntypat 3 znucl 39 24 8 typat 4*1 4*2 12*3 acell 5.518 7.54 5.247 Angstrom xred 0.07064 0.75000 0.48013 # Y 0.98013 # Y 0.42935 0.25000 0.57064 0.75000 0.01986 # Y 0.92935 0.25000 0.51986 # Y 0.00000 0.00000 0.00000 # Cr0.50000 0.00000 0.50000 # Cr 0.00000 0.50000 0.00000 # Cr 0.50000 0.50000 0.50000 # Cr 0.46054 0.75000 0.61179 # 0 0.03945 0.25000 0.11179 # 0 0.96054 0.75000 0.88820 # 0 0.53945 0.25000 0.38820 # 0 0.30409 0.55780 0.19616 # 0 0.19590 0.44219 0.69616 # 0 0.80409 0.94219 0.30383 # 0 0.69590 0.05780 0.80383 # 0 0.69590 0.44219 0.80383 # 0 0.80409 0.55780 0.30383 # 00.19590 0.05780 0.69616 # 0 0.30409 0.94219 0.19616 # 0

```
nspden 4 (Non-collinear)
nsppol 1
nspinor 2
so_psp 3*1 (SOC for norm-conserving)
spinat
12*0 # Y
0.0 0.0 5.0 # Cr1 (d^3)
0.0 0.0 -5.0 # Cr2 (d^3)
0.0 0.0 -5.0 # Cr3 (d^3)
0.0 0.0 5.0 # Cr4 (d^3)
36*0 # 0
```

Non-collinear case YCrO₃ (output from spinat along z)

Atom	Radius 7	Total density	mag(x)	mag(y)	mag(z)
1	2.00000	7.451331	-0.000000	0.000277	-0.000000
2	2.00000	7.451331	0.000000	0.000277	-0.000000
3	2.00000	7.451331	-0.000000	0.000277	-0.000000
4	2.00000	7.451331	-0.000000	0.000277	-0.000000
5	2.00000	11.787209	-0.072667	0.067117	2.434474
6	2.00000	11.787209	-0.074021	0.066454	-2.434451
7	2.00000	11.787209	0.072650	0.066488	-2.434491
8	2.00000	11.787209	0.074038	0.067083	2.434433
9	2.00000	6.291359	0.000000	0.001070	-0.000000
10	2.00000	6.291361	-0.000000	0.001070	-0.000000
11	2.00000	6.291357	-0.000000	0.001070	-0.000000
12	2.00000	6.291359	0.000000	0.001070	0.000000
13	2.00000	6.247049	0.001146	0.001165	-0.000078
14	2.00000	6.247047	0.001146	0.001165	0.000077
15	2.00000	6.247048	-0.001146	0.001165	-0.000077
16	2.00000	6.247049	-0.001146	0.001165	0.000077
17	2.00000	6.247047	0.001146	0.001165	-0.000078
18	2.00000	6.247049	0.001146	0.001165	0.000077
19	2.00000	6.247048	-0.001146	0.001165	-0.000077
20	2.00000	6.247047	-0.001145	0.001165	0.000077
 Total	magnetization	(spheres)	-0.000001	0.281846	-0.000037
Total	magnetization	(exact)	-0.000001	0.309096	-0.000041

YCrO₃ spins along the z-axis (AFM G-type); wFM canting along the y axis; wAFM canting along x. Spin-Orbit

coupling necessary to describe the canting and easy-axis

Non-collinear case YCrO₃ (from spinat along x/y)

starting with spinat along *x* direction:

Atom	Radius	Total density	mag(x)	mag(y)	mag(z)
5	2.00000	11.787209	2.434622	0.061122	0.072067
6	2.00000	11.787209	-2.434625	-0.061157	0.071949
7	2.00000	11.787209	-2.434653	0.059917	-0.072040
8	2.00000	11.787209	2.434656	-0.059960	-0.071924
Total	magnetization	(spheres)	-0.000000	-0.000084	0.000057
Total	magnetization	(exact)	-0.00000	-0.000092	0.000062

starting with spinat along y direction:

Atom	Radius	Total density	mag(x)	mag(y)	mag(z)
5	2.00000	11.787205	-0.065491	2.434621	-0.068435
6	2.00000	11.787205	0.065466	-2.434589	-0.069587
7	2.00000	11.787205	-0.065497	-2.434588	-0.069588
8	2.00000	11.787205	0.065542	2.434620	-0.068437
Total	magnetization	(spheres)	0.000022	0.000067	-0.291274
Total	magnetization	(exact)	0.000024	0.000073	-0.319436

Magnetocrystaline anisotropy (MCA) energy can be calculated:

spin direction	Energy (µeV)
001	0
010	99
100	199

In case of convergence troubles for magnetic systems:

- *diemixmag* flag can be reduced more than *diemix* (could be down to 0.1 for non-collinear cases).
- Increase nline
- Use of *nnsclo*< 0 (useful for non-collinear cases with "noisy" magnetization)
- Use *nnsclo*> 1 (in case *nnsclo*< 0 appears not sufficient)
- (In some systems, it could be necessary to start with a starting moment amplitude (*spinat*) larger than the physical one)

Constrained magnetic moment calculations

Constrain the direction of the magnetic moments (magconon flag =1) :

Lagrange multiplier:
$$E = E_{KS} + \sum_{i} \lambda \left[\mathbf{m}_{i} - \mathbf{m}_{i}^{0} (\mathbf{m}_{i}^{0} \cdot \mathbf{m}_{i}) \right]^{2}$$

Constrain the direction and the amplitude of the magnetic moments (magconon flag = 2):

$$\boldsymbol{E} = \boldsymbol{E}_{\mathcal{KS}} + \sum_{i} \lambda \left[\mathbf{m}_{i} - \mathbf{m}_{i}^{0} \right]^{2}$$

with λ the strength of the Lagrange multiplier (*magcon_lambda* flag) and m_i^0 the desired magnetic moment on each atom *i* (given by *spinat*).

Constrained magnetic moment calculations

Useful to explore the spin energy landscape (direction constraint):

And also to compute the magnetocrystaline anisotropy energy.

(For multiple local minima of complex better to use meta-heuristic approach, see J. Chem. Theory Comput. 14, 4455 (2018))

Can be useful to control high/low spin configurations (amplitude constraint).

Applied magnetic field

Applying a (Zeeman) magnetic field on the spins gives (zeemanfield flag):

$$V_{H} = -\mu_{B}\mu_{0} \begin{pmatrix} H_{z} & H_{x} + iH_{y} \\ H_{x} - iH_{y} & -H_{z} \end{pmatrix}$$

Linear magnetoelectric tensor $\mathbf{P} = \alpha \mathbf{H}$

As well as non-linear responses!

Conclusions

DFT + spins:

- Collinear magnetism: easy to handle
- Non-Collinear magnetism: often less easy
- DFT+U or Hybrid functionals are often necessary for magnetic systems
- Allows to compute:
 - (Super) Exchange interaction between spins (J).
 - Spin canting / Dzyaloshinsky-Moriya interaction (D)
 - Magnetic anisotropy
 - Response under Zeeman field (magnetic and magnetoelectric susceptibilities)

Other features:

- Orbital magnetism
- DFPT with magnetic field
- Spin dynamics with MULTIBINIT

o ...

Magnetism in DFT: Collinear case

Superexchange constants *J* can be estimated. Ex: Rock-Salt oxides

One needs to compute the energy for ferro and antiferro in order to extract J_1 and J_2 from:

$$E = E_0 + S\sum_i J_i S_i$$

Ex. for NiO: $J_1 \simeq 17$ meV and $J_2 \simeq -0.4$ meV (exp: $J_1 \simeq 19$ meV)

PRB 84, p.224429 (2011), PRB 86, 094413 (2012)

Magnetism in DFT: Collinear case

Superexchange constants J can also be estimated through Wannier \mapsto Green's functions (PRB 91, 224405 (2015), see TB2J script and related tuto):

$$J_{ij}^{kk'} = -\frac{1}{2\pi} \int_{-\infty}^{E_F} \sum_{kk'} Im(\widetilde{\Delta}_i^{kk} \widetilde{G}_{ij,\downarrow}^{kk'} \widetilde{\Delta}_j^{k'k'} \widetilde{G}_{ji,\uparrow}^{k'k})$$

Ex, SrMnO₃:

i= 0(Mn1), j= 0(Mn1), R= (-1, 0, 0), J=-6.9178	meV, vec=(-3.810, 0.000, 0.000 meV, vec=(0.000, -3.810, 0.000
	meV, vec=(0.000, -3.810, 0.000
i= 0(Mn1), j= 0(Mn1), R= (0, -1, 0), J=-6.9178	
i= 0(Mn1), j= 0(Mn1), R= (0, 1, 0), J=-6.9178	meV, vec=(0.000, 3.810, 0.000)
i= 0(Mn1), j= 0(Mn1), R= (1, 0, 0), J=-6.9178	meV, vec=(3.810, 0.000, 0.000)
i= $0(Mn1)$, j= $0(Mn1)$, R= (0, 0, 1), J=-6.8353	meV, vec=(0.000, 0.000, 3.810)
i= $0(Mn1)$, j= $0(Mn1)$, R= (0, 0, -1), J=-6.8353	meV, vec=(0.000, 0.000, -3.810)
i= 0(Mn1), j= 0(Mn1), R= (-1, 0, 1), J=-0.5538	meV, vec=(-3.810, 0.000, 3.810)
i= $0(Mn1)$, j= $0(Mn1)$, R= (1, 0, -1), J=-0.5538	meV, vec=(3.810, 0.000, -3.810)
i= $0(Mn1)$, j= $0(Mn1)$, R= (1, 0, 1), J=-0.5538	meV, vec=(3.810, 0.000, 3.810)
i= $0(Mn1)$, j= $0(Mn1)$, R= (0, 1, 1), J=-0.5538	meV, vec=(0.000, 3.810, 3.810)
i= 0(Mn1), j= 0(Mn1), R= (0, -1, -1), J=-0.5538	meV, vec=(0.000, -3.810, -3.810)
i= $0(Mn1)$, j= $0(Mn1)$, R= (0, -1, 1), J=-0.5538	meV, vec=(0.000, -3.810, 3.810)
i= $0(Mn1)$, j= $0(Mn1)$, R= (-1, 0, -1), J=-0.5538	meV, vec=(-3.810, 0.000, -3.810)
i= 0(Mn1), j= 0(Mn1), R= (0, 1, -1), J=-0.5538	meV, vec=(0.000, 3.810, -3.810)
i= $0(Mn1)$, j= $0(Mn1)$, R= (-1, -1, 0), J=-0.5314	meV, vec=(-3.810, -3.810, 0.000)
i= 0(Mn1), j= 0(Mn1), R= (1, -1, 0), J=-0.5314	meV, vec=(3.810, -3.810, 0.000

Spin dispersion (magnon) of SrMnO₃ in its FM phase:

