

Analyzing and post-processing abinit output data

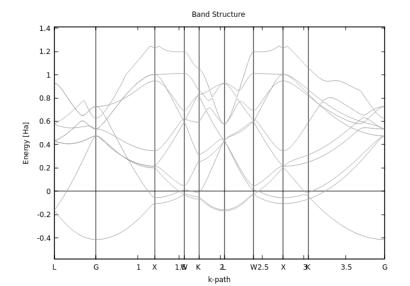
Boris Dorado

Best softwares for data analysis

- Xmgrace, gnuplot: for plotting everything you need to plot. Choose your side. Available on the internet.
- > XCrysDen: for visualizing charge densities and Fermi surfaces. Available on the internet.
- Cut3d: for converting abinit output files into a bunch of different formats. Included with abinit.
- QAgate: for pretty much everything else, a.k.a. your new best friends for years to come. Available on the internet.

I. BAND STRUCTURE

Eigenvalues
Fermi Surface
Density of States (DOS)
Projected DOS

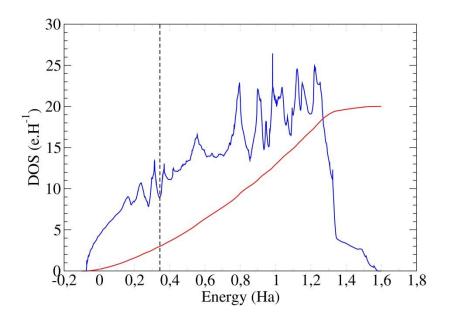

- Friendly reminder:
 - Electrons in a solid is a many-body problem.
 - ullet DFT: independent electrons moving in an effective potential $U(\mathbf{r})$ and satisfying the single-electron Schrödinger equation.
 - ightharpoonup The potential $U(\mathbf{r})$ is periodic.
- ▶ Bloch theorem: such electrons are called Bloch electrons. The associated wave functions can be expressed as plane waves:

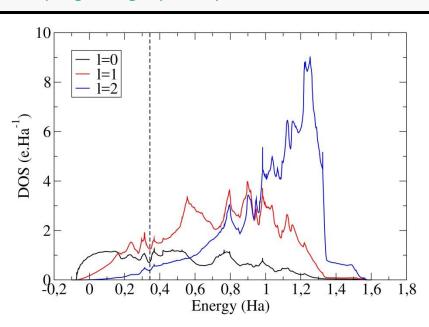
$$\psi_{n\mathbf{k}} = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$$

where $u({f r})$ has the same periodicity as the Bravais lattice

- \mathbf{k} is the wave vector. n is the band index: for each value of \mathbf{k} , there is an infinite set of solutions of the Schrödinger equation.
- \triangleright Energy levels of one electron in a periodic potential: $\epsilon_n(\mathbf{k}) \rightarrow \text{band structure}$ of the solid.

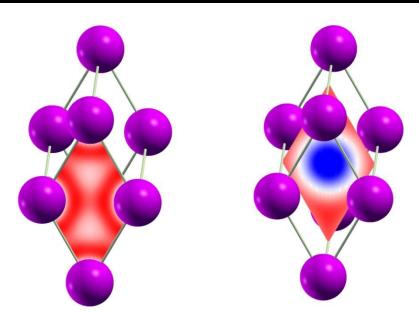
- How To Plot a band structure:
 - In the first dataset, run a regular ground state (GS) calculation.
 - ❖ In the second dataset, run a non self-consistent calculation (iscf-2): read the GS charge density (getden -1) and define the k-point segments (kptopt, kptbounds, ndivk).
 - Typical **k**-point segments for a fcc structure: $L \Gamma X W K L W X K \Gamma$. Available on the abinit website.
 - Plot the single electron eigenvalues $\epsilon_n(\mathbf{k})$ using your favorite tool (xmgrace, gnuplot, ...)
- \triangleright Example: aluminum. For each wave vector **k**, there are nband bands.


- Fermi surface: surface that separates occupied from unoccupied states.
 - N non-interacting free electrons: the Fermi sphere.
 - ❖ *N* non-interacting electrons in a periodic potential: Fermi surface usually not spherical.
 - Fermi surface: constant energy surface in the **k** space.
 - Several material properties depend on the geometry of the Fermi surface.
- How To Visualize a Fermi surface:
 - ❖ Run a regular GS calculation with press.org/<a>. Fine k-point grid required!
 - ❖ A _BXSF file is printed at the end of the calculation. Use it to draw the Fermi surface with xcrysden
- Example: aluminum.



- **Density of states (DOS)** $g_n(\epsilon)$: number of electronic states in the n^{th} band around ϵ .
- Integrating the whole DOS up to the Fermi level yields the total number of electrons.
- How To Plot the density of states:
 - Run a regular GS calculation with prtdos 2. Fine k-point grid required!
 - Plot the DOS using your favorite tool (xmgrace, gnuplot, ...)
- Example: aluminum.

- \triangleright Projected DOS: decomposition of the DOS by atom and l quantum number
 - l = 0 → s, l = 1 → p, l = 2 → d, l = 3 → f.
 - Contribution of each atomic orbital to the total DOS.
- \blacktriangleright How To Plot the l-decomposed DOS:
 - Run a regular GS calculation with prtdos 3. Specify the number (natsph) and index (iatsph) of the atoms to be considered.
 - Plot the DOS using your favorite tool (xmgrace, gnuplot, ...)
- Example: aluminum, one atom.
- Careful: Only electrons in PAW spheres are accounted for.


II. CHARGE DENSITY

Charge Distribution Magnetic Moments

Charge density

- Friendly reminder:
 - DFT: the charge density instead of the wave functions.
- How-To Visualize the charge density in the cell:
 - Run a regular GS calculation, this will output by default the charge density file _DEN.
 - Use cut3d to convert the charge density file into an xcrysden .xsf file.
 - Use xcrysden to open the .xsf file and visualize the charge density. Requires a bit of practice!
- Example: aluminum.

- Integrating the charge density inside PAW spheres yields, if any:
 - The atomic magnetic moments.
 - The Bader charges.
- ► How-To Get atomic magnetic moments:
 - Run a regular GS calculation including spin-polarization (nsspol 2). This will take twice more time!
 - Search for the string "Diff" at the end of the output file.
 - Diff(up-dn) column shows the atomic magnetic moments.

```
Integrated electronic and magnetization densities in atomic spheres:

Note: Diff(up-dn) is a rough approximation of local magnetic moment

Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)

1 1.90363 0.393496 0.393496 0.786991 -0.000000
```


III. QAGATE

Installation Features

Animemd

- Qagate is the ultimate tool for abinit. You can:
 - Visualize crystal structures, get space group, ...
 - Calculate bond distance and angles.
 - Plot total energy, pressure, temperature, stress, etc. with respect to time step, image, etc.
 - Visualize phonon modes and condense unstable modes.
 - Build supercells for studying defects.
 - Visualize diffusion pathways.
 - And much more!
- How-To Install qagate (Linux only):
 - Add the repository to your repository list:

sudo add-apt-repository ppa:piti-diablotin/abiout

sudo apt-get update

Install gagate:

sudo apt-get install abiout