
ABINIT School 2019
January 21 – 25, 2019
Bruyères-le-Châtel, France

Installing ABINIT on a Laptop – Hands-on session

By following this step-by-step procedure, you should understand how to

install ABINIT on a laptop using a standard Linux distribution. You will

probably need an Internet connection.

First of all, it is mandatory to have a Fortran compiler, a MPI library and a

linear algebra library installed. If not, you need to install these packages:
- On Ubuntu : sudo apt-get install gfortran openmpi liblapack-dev

- On Fedora/CentOS : sudo yum install gcc-gfortran openmpi-devel lapack-devel

- On macOS : sudo port install gcc8 openmpi lapack

 or brew install gcc openmpi lapack

In the directory dedicated to this tutorial, you should find the abinit-

x.y.z.tar.gz file. If not, download this file from ABINIT website

(www.abinit.org) and then extract it.

Enter in the abinit-x.y.z directory.

It is highly recommended to create a separate directory to compile the code

and store the object files. Let’s create the build directory by typing:

mkdir build

Enter in the build directory.

Let’s first try to configure the build automatically.

Just type (in the abinit-x.y.z/build folder):

../configure

After a few seconds, you should obtain the configuration report.

What do we see in it (usual case)?

* OpenMP enabled : no
* MPI enabled : no
* TRIO flavor = none
* DFT flavor = none

The parallel build (MPI and openMP) is not activated; no plugin has been

activated (no “Transferable I/O” (TRIO) plugin, no DFT plugin).

This is not optimal! Let’s change this.

First of all, we will create a configuration file; this is more convenient than

having a long command line to configure the code.

Type the command (in the terminal):

hostname

You should get the name of the computer.

Something like: computername or computername.domain.domain

Let’s create a file named computername.ac in the build directory. Use your

favorite editor for that.

Then, in this configuration file, add the following lines, and retry ../configure:

enable_mpi=”yes”
enable_openmp=”yes”

If the configuration script goes to the end, MPI has been detected.

If not, you should add a line locating the MPI installation.

A possibility is to locate the mpif90 file (type: which mpif90). You should find

it in a place like: path_to_MPI/bin/mpif90

Then add the following line in the configuration files and relaunch ../configure:

with_mpi_prefix=”path_to_MPI”

Note: another possibility is to use directly mpif90 as Fortran

compiler. For that, add the following lines in the configuration file:
FC=”mpif90”
CC=”mpicc”
CXX=mpicxx

This time, everything should be OK; MPI has been detected.

Now, let’s try to add the ABINIT plugins.

For this tutorial, let’s first try to add netCDF (“Transferable I/O”=TRIO

plugin). Add the following in the configuration file and re-run the configure

script:

with_trio_flavor=”netcdf”

If the configuration script goes to the end, you should see the following in the

configuration report:

 * TRIO flavor = netcdf

If not, and if you have an Internet connection, you should see:

* TRIO flavor = netcdf-fallback

This means that ABINIT will “fall back” on its own netCDF package,

downloading it from the Internet.

If the configuration script stops with an error (no Internet connection), we

have to manually provide the netCDF package.

In the directory dedicated to this tutorial, you should have a ABINIT-

PLUGINS directory. Copy the netCDF file (netcdf-4.1.1.tar.gz) into the

$HOME/.abinit/tarballs directory;

or download it from www.abinit.org/fallbacks).

Then use the configure script again.

At this stage, the detection of netCDF should be OK.

Let’s now add one additional plugin: libXC (library of exchange-correlation

functionals).

Copy the libxc-x.y.z.tar.gz file into $HOME/.abinit/tarballs (or download it

from www.abinit.org/fallbacks).

Add the following in the configuration file:

with_dft_flavor=”libxc”

In the final configuration report, you should see (ABINIT will “fall back” on its

own libXC package):

* DFT flavor = libxc-fallback

Everything is almost ready for the compilation

Just type:

make mj4

...and wait... wait..

Depending on your computer, the compilation can take 1 min. or 15 min.

At the end of the compilation process, you should get some messages

explaining how to check the installation by running the automatic tests.

Let’s try if ABINIT can run; just type:

cd tests && ../../tests/runtests.py fast

And wait for the report.

Many other automatic tests are available. You can get the list with:

../../tests/runtests.py –show-info

If you want to install ABINIT in your PATH to have it accessible from

everywhere, you can type, in the “build” directory:

make install

OK, this is done.

You have installed ABINIT, congratulation!

To go further...

Improving Linear Algebra routines.

Usually, the detected linear algebra is the netlib one (you can check that in

the configuration report):

* LINALG flavor = netlib

The netlib BLAS/Lapack distribution is not really efficient. You could take

advantage of a better implementation of the Linear Algebra routines.

For example, you could try to find the Atlas library.

If it is not present on your computer, install it:
- On Ubuntu : sudo apt-get install libatlas-base-dev

- On Fedora/CentOS : sudo yum install atlas-devel

- On macOS : sudo port install atlas or brew install atlas

Then add in the configuration file:

with_linalg_flavor=”atlas”

If it is successfully detected, the final report should contain:

* LINALG flavor = atlas

You can also try to link manually the linear algebra library.

Example with Atlas:

with_linalg_libs=”-llapack -lf77blas -lcblas –latlas”

Improving FFT implementation

On the same model as Linear Algebra, you can take advantage of the FFTW

library (if installed).

If it is not present on your computer, install it:
- On Ubuntu : sudo apt-get install libfftw3-dev

- On Fedora/CentOS : sudo yum install fftw-devel

- On macOS : sudo port install fftw or brew install fftw

The better way to try it is to add:

with_fft_flavor=”fftw3”
with_fft_libs=”-lfftw3 –lfftw3f”

A possible configuration file (laptop)

enable_mpi=”yes”.
with_mpi_prefix=”/usr”
enable_openmp=”yes”

with_trio_flavor=”netcdf”.
with_dft_flavor=”libxc”.

with_linalg_flavor=”atlas”
with_linalg_libs=”-llapack -lf77blas -lcblas –latlas”

with_fft_flavor=”fftw3”
with_fft_libs=”-lfftw3 –lfftw3f”

