
ABINIT School 2019
January 21 – 25, 2019
Bruyères-le-Châtel, France

Tuning ABINIT (precision, convergence) – Hands-on session

By following this step-by-step tutorial, you should experiment how to change

the default settings of ABINIT to make it converge faster.

As usual, create a working directory where you will copy the input files and

execute the code. Let’s call it ~tutorial_tuning_work.

Copy the starting input file — called ttuning/ttuning.in — into the

working directory. Create a subfolder pseudo in the working directory and

copy the pseudopotentials from ttuning/pseudo.

Then, create a ABINIT “files” file in order to run ttuning.in using the

pseudopotentials from the pseudo directory (1-Bismuth, 2-Iron, 3-Oxygen).

We can now start.

For this hands-on session, the working system is a 20-atom cell of

Perovskite BiFeO3 in its (theoretical) cubic phase. Two oxygen vacancies

were introduced in it and the cell was distorted;

The final number of atoms is 18.

Introducing defects in the cell makes it more difficult to converge with

ABINIT.

First attempt: run ABINIT with this initial file.

To perform the calculations in an acceptable time, it is preferable to use about

200 processors.

Note that the automatic parallelization is activated: autoparal is on.

#MSUB -n 200
…
ccc_mprun abinit <files >log

Use the standard procedure to submit the calculation on the supercomputer

(ccc_msub). You can use the attached cobalt.sub submission file.

The run stops after 20 iterations without having really converged the

electronic self-consistent cycle.

Now, you can play with various input parameters in order to evaluate their

respective influence on the convergence rate.

Before modifying a parameter in the input file, don’t hesitate to read ABINIT

documentation (Input Variables section).

Parameters you can play with:

 The history size of the mixing scheme, npulayit.

 The parameters of the dielectric matrix used to precondition the density

residual: diemix, diemac.

 The maximal number of iterations of the (iterative) diagonalization

scheme, nline.

 The number of non-self-consistent iterations, i.e. the number of

restarts of the iterative algorithm, nnsclo.

 The mixing scheme iscf (7=on the potential, 17=on the density).

What is the best compromise?
Do you succeed in making the code converge in less than 20 iterations?

In principle, with optimal settings, ABINIT should reach convergence for this

system in less than 20 iterations...

Is it possible to further improve this result?
Let’s try to play with the number of bands. Let’s make an additional

experiment:

 Increase slightly (10%) the nband parameter (setting nband=110)

and try this new setting.

So far, we have not changed the parameters dedicated to parallelism.

We have let ABINIT adjust them automatically. Only MPI parallelism with

distributed memory was used.

Let's try now to run the code using hybrid parallelism. For that, let's use

multithreading and choose to distribute each MPI process over 14 tasks. This

number corresponds to the number of CPUs on 1 socket of a Cobalt node

(each node is made of 2 sockets).

You should now modify the submission script by inserting the following lines:

#MSUB -n 16
#MSUB -c 14
…
export OMP_NUM_THREADS=14

With these setting, you will use at most 16 MPI processes spread over 14

threads, i.e. at most 224 CPUs.

Then start the job.

What does ABINIT do?

It stops prematurely, finding no appropriate process/task distribution!

In fact, 14 is not a very practical number. However, in the log file, ABINIT

give some advice. A list of more suitable nband values is given. nband=112 is

identified as the optimal value.

Change the value of nband in the input file (nband=112) and restart the code.

The code runs now and the iterations converge rather well. The distribution

of processes – automatically determined - should be:

npkpt = 2, npband = 8, bandpp = 14

The LOBPCG diagonalization algorithm is used, with a block size equal to

npband x bandpp = 112; this is the ideal block size (all bands in 1 block).

However, the computation time needed to perform the iterations is much

longer than previously. This shows that the use of the keyword autoparal is

not optimal.

What's the issue? How to do better?

Indication: the most effective parallelism is that using the k points; the

present npkpt value is very small (npkpt = 2).

A solution (optimal set of parameters) is given in the ttuning-best.in file.

Let’s try now to speed-up the calculation.

Decrease the value of the input parameter accuracy. Try to set accuracy=3,

then accuracy=2 and finally accuracy=1.

You should notice a speed-up of the calculation... and a change in the

significant digits (look for instance at the value of the energy ETOT).

Is this loss of precision acceptable?
To evaluate this, you can try to perform a structural relaxation of the

simulation cell. Add the following line in the input file and run ABINIT:

ionmov 22 ntime 20

Does the relaxation run in the same way with accuracy=1 or accuracy=4?

