Parallel research of numerous eigenvalues in ABINIT

François Alouges^(a), **Christophe Audouze**^(b) and , **Christophe Audouze**^(b) and
les Zérah^(b)
- Laboratoire de Mathématiques
DAM, lle de France $\boldsymbol{\mathsf{Gilles\text{ } Z}$ érah ${}^{(b)}$

Framework of the problem

Calculation of the ground-state energy $E^{KS}(\rho)$, for a fixed geometry.

$$
\left\{\begin{array}{l} \bar{H}\varphi_i=\varepsilon_i\varphi_i,\ \forall i=1,\ldots,N,\\ \int_{\rm I\!R^3}\varphi_i\varphi_j^*=\delta_{ij}. \end{array}\right.
$$

Framework of the problem

Calculation of the ground-state energy $E^{KS}(\rho)$, for a fixed geometry.

$$
\begin{cases} \bar{H}\varphi_i = \varepsilon_i\varphi_i, \ \forall i = 1, \dots, N, \\ \int_{\mathbb{R}^3} \varphi_i\varphi_j^* = \delta_{ij}. \end{cases}
$$

 Numerical resolution: discretization in a finite dimension basis $\{ \chi_{j} \}_{j=1}$ $_M$ (Ga \boldsymbol{M} (Galerkin method)
eigenvalue problem generalized eigenvalue problem

$$
\varphi_i = \sum_{j=1}^{M} c_{ji} \chi_j \Rightarrow \tilde{H} \mathbf{c_i} = \varepsilon_i S \mathbf{c_i}, \forall i = 1, ..., N
$$

 \sim \sim \sim \sim \sim \sim \sim \mathcal{I} : discretized KS Hamiltonian; S : overlap matrix

Numerical resolution

Direct minimization of $E^{KS}(\rho),$ by nonlinear conjugate gradient (NLCG) algorithm

$$
\min \left\{ \sum_{i=1}^{N} (\tilde{H}\psi_i, \psi_i); (\psi_i, \psi_j) = \delta_{ij} \right\}
$$

$$
\psi_i
$$
: wave vectors; { φ_i }: KS orbitals

At SCF convergence: $pan(\psi_1, \ldots, \psi_N) = Span(\varphi_1, \ldots, \varphi_N)$

Numerical resolution

Direct minimization of $E^{KS}(\rho),$ by nonlinear conjugate gradient (NLCG) algorithm

$$
\min \left\{ \sum_{i=1}^{N} (\tilde{H}\psi_i, \psi_i); (\psi_i, \psi_j) = \delta_{ij} \right\}
$$

$$
\psi_i
$$
: wave vectors; { φ_i }: KS orbitals

At SCF convergence: $pan(\psi_1,\ldots,\psi_N)=Span(\varphi_1,\ldots,\varphi_N)$:omnlexity (orthodonalization of the

Complexity (orthogonalization of the ψ_i): $\mathcal{O}(MN^2)$ or \sim 0. . (matrix/vectors products in $\mathcal{O}(N^2 \log N)$)

Specificities of the ABINIT code and difficulties:

- for each SCF loop, calculation of pseudo-eigenvectors (i.e. not converged)
- : full symmetric matrix, of very large dimension and not explicitly known
- the eigenvalues calculation is intrinsically not parallel

Specificities of the ABINIT code and difficulties:

- for each SCF loop, calculation of pseudo-eigenvectors (i.e. not converged)
- : full symmetric matrix, of very large dimension and not explicitly known
- the eigenvalues calculation is intrinsically not parallel

Goal: propose parallel methods to realize calculations on more complex molecular systems.

New algorithm (1)

calculation of exact eigenvectors instead of pseudo-eigenvectors \Rightarrow orthogonality of the ψ_i (\tilde{H} symmetric) such that

$$
\min \left\{ \sum_{i=1}^{N} ((\tilde{H} - \lambda_i I)^2 \psi_i, \psi_i) \right\}
$$

New algorithm (1)

calculation of exact eigenvectors instead of pseudo-eigenvectors \Rightarrow orthogonality of the ψ_i (H symmetric) such that

$$
\min \left\{ \sum_{i=1}^{N} ((\tilde{H} - \lambda_i I)^2 \psi_i, \psi_i) \right\}
$$

spectral partitionning of an energy band $\lceil a \rceil$ $\left[a,b\right]$ iza bounds to be found (i.e. spectrum localization).

New algorithm (1)

יונים וואו לא מודע הוא מודע ה
לא מודע הוא מודע הו

calculation of exact eigenvectors instead of pseudo-eigenvectors \Rightarrow orthogonality of the ψ_i (H symmetric) such that

$$
\min \left\{ \sum_{i=1}^{N} ((\tilde{H} - \lambda_i I)^2 \psi_i, \psi_i) \right\}
$$

spectral partitionning of an energy band $\lceil a \rceil$ $\left[a,b\right]$ iza bounds to be found (i.e. spectrum localization).

Proposals for the choice of a and b :

- given by the code user
- Lanczos algorithm
	- estimate of the N^{th} eigenvalue of \bar{H}

Spectral partitionning: details

Iterative algorithm with dynamic allocations of shifts λ_i

Spectral partitionning: details

Iterative algorithm with dynamic allocations of shifts λ_i \bullet

 $> N$ eigenvalues in $[a, b] \Rightarrow \alpha k$ research of igenvalues (3 $< \alpha < 4$). eigenvalues ($3 < \alpha < 4)$.

To take into account of multiple eigenvalues:

$$
\min \left\{ \sum_{i=1}^{N_n} \sum_{j=1}^n \left((\tilde{H} - \lambda_i I)^2 \psi_{ij}, \psi_{ij} \right), (\psi_{ij}, \psi_{ik}) = \delta_{jk} \right\},\,
$$

and the contract of the contra where $N_{\bm n} =$ $\frac{N}{\bm{n}} \$ \cdot is the number of blocks of \boldsymbol{n} wave vectors $(n \in \{1, 2, 3, 4\})$.

To take into account of multiple eigenvalues:

$$
\min \left\{ \sum_{i=1}^{N_n} \sum_{j=1}^n \left((\tilde{H} - \lambda_i I)^2 \psi_{ij}, \psi_{ij} \right), (\psi_{ij}, \psi_{ik}) = \delta_{jk} \right\},\
$$

vectors $(\bm{n} \in \{1,2,3,4\}).$ Theoretical complexity: where $N_{\bm n} =$ $\frac{N}{\bm{n}} \$ \cdot is the number of blocks of \boldsymbol{n} wave

 sequentially. Theoretical complexity: $N_{\bm n}\times M{\bm n}^2={\bm n}MN\Rightarrow{\cal O}(N^2)$

Results and conclusions:

• Principle of the algorithm without reorthog. is validated (H_2, Si) but ... real complexity: $\alpha N^3 \rightarrow \beta N^2$ with $\beta \gg \alpha$
because: because:

Results and conclusions:

 \overline{a}

- **•** Principle of the algorithm without reorthog. is validated (H_2,Si) but ... real complexity: $\alpha N^3\rightarrow \beta N^2$
because:
calculation of exact eigenvalues by NLCG because:
- with $\beta \gg \alpha$
can be very calculation of exact eigenvalues by NLCG can be very hard. The difficulties are:

numerical: cond(
$$
\psi_k
$$
) =
$$
\frac{\lambda_{\text{max}}}{\min_{j \neq k} |\lambda_j - \lambda_k|}
$$

 $\frac{1}{\lambda_j - \lambda_k}$
iltonians physical: spectrum of Hamiltonians has not ^a regular distribution

Results and conclusions:

 \overline{a}

- **•** Principle of the algorithm without reorthog. is validated (H_2,Si) but ... real complexity: $\alpha N^3\rightarrow \beta N^2$
because:
calculation of exact eigenvalues by NLCG because:
- with $\beta \gg \alpha$
can be very calculation of exact eigenvalues by NLCG can be very hard. The difficulties are:

numerical: cond(
$$
\psi_k
$$
) =
$$
\frac{\lambda_{\text{max}}}{\min_{j \neq k} |\lambda_j - \lambda_k|}
$$

 $\frac{1}{\lambda_j - \lambda_k}$ iltonians physical: spectrum of Hamiltonians has not ^a regular distribution

 \overline{L} and \overline{L} and

and ρ are invariant under any unitary tranformation
roposal of a new algorithm (2) with calculations of
ters of eigenvalues. proposal of ^a new algorithm (2) with calculations of clusters of eigenvalues.

New algorithm (2)

Calculation of eigensubspaces with local reorthog. by

$$
\begin{cases} \text{ . } \text{NLCG on } (\tilde{H} - \lambda_i I)^2 \\ \text{ . } \text{Lanczos on } (\tilde{H} - \lambda_i I)^{-1} \end{cases}
$$

New algorithm (2)

- Calculation of eigensubspaces with local reorthog. by NLCG on (\tilde{H}) $(\lambda_i I)^2$ Lanczos on (\tilde{H}) $(\lambda_i I)^{-1}$
- Hierarchy of algorithms:

• Numerical property of NLCG for eigensubspaces calculation:

Proposition 1. Let A be a matrix of order M and $\{u_j, \lambda_j\}$ its eigenstates such that $|\lambda_1 - \mu| < \ldots < |\lambda_M - \mu|.$ Then the
eenvergence fector of the enproximated eigenenese of dimen convergence factor of the approximated eigenspace of dimension m is ${\cal O}$ $\frac{\lambda}{\lambda_n}$ $m - \mu$ $m+1 - \mu$ $\left(\begin{matrix} \end{matrix}\right)$ (subspace iteration algorithm).

Numerical property of NLCG for eigensubspaces calculation:

Proposition 1. Let A be a matrix of order M and $\{u_j, \lambda_j\}$ its eigenstates such that $|\lambda_1 - \mu| < \ldots < |\lambda_M - \mu|.$ Then the
eenvergence fector of the enproximated eigenenese of dimen convergence factor of the approximated eigenspace of dimension m is ${\cal O}$ $\frac{\lambda}{\lambda_n}$ ner $m - \mu$ $m+1 - \mu$ (subspace iteration algorithm).

f the closest cluster near μ tl

if m_{μ} = dimension of the closest cluster near μ then:

- $m < m_\mu$: very slow convergence
- $m = m_{\mu}$: optimal convergence

ؚ
ا

 $m > m_{\mu}$: it depends of the \exists of other clusters

• Exemple: A diagonal, $dim(A) = 20$, concentrated spectrum:

 $\mathsf{sp}(A) = \{0.99$ $(0, 1.02, 1.03, 1.04, 1.05, \ldots, 3.99)$ $\{4.02, 4.03, 4.04, 4.05\}$

• Exemple: A diagonal, $dim(A) = 20$, concentrated spectrum:

 $\mathsf{sp}(A) = \{0.99$ $(0, 1.02, 1.03, 1.04, 1.05, \ldots, 3.99)$ $\{4.02, 4.03, 4.04, 4.05\}$

$$
\mu = -1.0, \, \log(|\lambda_i^{(k)} - \lambda_i|) = f(k), \, m = 5 \text{ et } 6.
$$

Paris, may $2004 - p.11/13$

 $=-1.0$ $\log(|\lambda_i^{(k)}|)$ $\lambda^{(k)} - \lambda_i |) = f(k), \ m = 10$ et 11

 $=-1.0$ $\log(|\lambda_i^{(k)}|)$

 $\begin{align} \mathcal{L}^{(k)} - \lambda_i | & = f(k), \ m = 10 \text{ et } 11 \end{align}$
b-clusters of eigenvalues given
artitionning of $[a,b],$ related to convergence of sub-clusters of eigenvalues gives another criterium of partitionning of $\left[a,b\right]$, related to physical properties. physical properties. In a few words:

(1) - Spectral slice of an energy band with bounds to be chosen

(2) - Filling of energy regions via calculations of eigensubspaces, with local reorthog. Two ways:

> $\ddot{}$ (2.1) - Lanczos on $(\tilde H$ $(\lambda_i I)^{-1}$ "Classical" partitionning. (2.2) - NLCG on $(\tilde H$ $(\lambda_i I)^2$ Physical partitionning related to the clusters of eigenvalues.

In a few words:

(1) - Spectral slice of an energy band with bounds to be chosen

(2) - Filling of energy regions via calculations of eigensubspaces, with local reorthog. Two ways:

> $\ddot{}$ (2.1) - Lanczos on $(\tilde H$ $(\lambda_i I)^{-1}$ "Classical" partitionning. (2.2) - NLCG on $(\tilde H$ $(\lambda_i I)^2$ Physical partitionning related to the clusters of eigenvalues.

 algorithms (numerical and theoretical studies). "Long distance orthogonality": theorems quantifying the speed of orthog. between 2 vectors for different