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Framework of the problem

# Calculation of the ground-state energy EX°(p), for a
fixed geometry.
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Framework of the problem

# Calculation of the ground-state energy EX°(p), for a
fixed geometry.
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#® Numerical resolution: discretization in a finite dimension
basis {x;},=1..m (Galerkin method)
= generalized eigenvalue problem

M
QY; = chz'Xj = [j[Ci =¢g;5¢;,Vi=1,...,N
j=1

H: discretized KS Hamiltonian; S: overlap matrix
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Numerical resolution

# Direct minimization of E£3(p), by nonlinear conjugate
gradient (NLCG) algorithm

N
min {Z(ﬁwi,%); (i, 45) = 57::/'}

1=1

{1);}: wave vectors; {y;}: KS orbitals

At SCF convergence:
Span(Y1, ..., ¢¥n) = Span(e1, ..., ¢N)
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Numerical resolution

# Direct minimization of E£3(p), by nonlinear conjugate
gradient (NLCG) algorithm

N
min {Z(ﬁwi,wi); (i, 45) = 57::/'}

1=1

{1);}: wave vectors; {y;}: KS orbitals

At SCF convergence:
Span(Y1, ..., ¢¥n) = Span(e1, ..., ¢N)

» Complexity (orthogonalization of the v;): O(M N?) or
O(N?). (matrix/vectors products in O(N?log N))

Paris, may 2004 — p.3/1:



Specificities of the ABINIT code and difficulties:

o for each SCF loop, calculation of pseudo-eigenvectors
(l.e. not converged)

o [: full symmetric matrix, of very large dimension and
not explicitly known

# the eigenvalues calculation is intrinsically not parallel
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Specificities of the ABINIT code and difficulties:

o for each SCF loop, calculation of pseudo-eigenvectors
(l.e. not converged)

o [: full symmetric matrix, of very large dimension and
not explicitly known

# the eigenvalues calculation is intrinsically not parallel

Goal: propose parallel methods to realize calculations on
more complex molecular systems.
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New algorithm (1)

# calculation of exact eigenvectors instead of

pseudo-eigenvectors = orthogonality of the v; (H
symmetric)
such that

N
min {Z((ﬁ[ — N I) %, wz)}

1=1
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New algorithm (1)

# calculation of exact eigenvectors instead of

pseudo-eigenvectors = orthogonality of the v; (H
symmetric)
such that

N
min {Z((ﬁ] — N I) %, wz)}

1=1

# spectral partitionning of an energy band |a, b|
< bounds to be found (i.e. spectrum localization).
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New algorithm (1)

# calculation of exact eigenvectors instead of

pseudo-eigenvectors = orthogonality of the v; (H
symmetric)
such that

N
min {Z((ﬁ[ — N I) %, wz)}

1=1

# spectral partitionning of an energy band |a, b|
< bounds to be found (i.e. spectrum localization).

Proposals for the choice of a and b:

. given by the code user
- Lanczos algorithm
. estimate of the N eigenvalue of H
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Spectral partitionning: details

# lterative algorithm with dynamic allocations of shifts \;
until [a, b] Is completely explored.

x |} I Y Y Y x

a A / b
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Spectral partitionning: details

# lterative algorithm with dynamic allocations of shifts \;
until [a, b] Is completely explored.

x |} I Y Y Y x

a A / b

® k> N eigenvalues in |a,b] = ak research of
eigenvalues (3 < a < 4).
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# To take into account of multiple eigenvalues:

\

Nn n
min ZZ((E’ — )\zI)Q%j,wz'j),(%j,%k) = 0jk ¢ ;

i=1 j=1

/

N .
where N,, = — Is the number of blocks of n wave
n

vectors (n € {1,2,3,4}).
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# To take into account of multiple eigenvalues:

\

Nn n
min ZZ((E’ — )\zI)Q%j,wz'j),(%j,%k) = 0jk ¢ ;

i=1 j=1

/

N .
where N,, = — Is the number of blocks of n wave
n

vectors (n € {1,2,3,4}).

® Theoretical complexity: N,, x Mn? = nMN = O(N?)
sequentially.
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Results and conclusions:

# Principle of the algorithm without reorthog. is validated
(Hs, S7) but ... real complexity: aN3 — SN? with 5> o
because:
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Results and conclusions:

# Principle of the algorithm without reorthog. is validated
(Hs, S7) but ... real complexity: aN3 — SN? with 5> o
because:

# calculation of exact eigenvalues by NLCG can be very
hard. The difficulties are:

y
)\max

- numerical: cond =
(V%) min |A; — Ag|
{ j#k
- physical: spectrum of Hamiltonians has not a
\ regular distribution
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Results and conclusions:

# Principle of the algorithm without reorthog. is validated
(Hs, S7) but ... real complexity: aN3 — SN? with 5> o
because:

# calculation of exact eigenvalues by NLCG can be very
hard. The difficulties are:

y
)\l’l’laX

- numerical: cond =
(V%) min |A; — Ag|
{ j#k
- physical: spectrum of Hamiltonians has not a
\ regular distribution

® E%5 and p are invariant under any unitary tranformation

= proposal of a new algorithm (2) with calculations of
clusters of eigenvalues.
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New algorithm (2)

# Calculation of eigensubspaces with local reorthog. by

.NLCG on (H — \1)?
. Lanczos on (H — \I) 7!
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New algorithm (2)

» Calculation of eigensubspaces with local reorthog. by
- NLCG on (H — )\1)?
. Lanczos on (H — \I) 7!

# Hierarchy of algorithms:

Original ABINIT, full reorthog. O(N?)
= SCF convergence

)

algo. (2), with partial reorthog.
= convergence of eigenspaces

)
algo. (1), without reorthog. O(x - 206)
= bad convergence of eigenvectors
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# Numerical property of NLCG for eigensubspaces
calculation:

Proposition 1. Let A be a matrix of order M and {u;, A;} its

eigenstates such that |A; — p| < ... < [A\ps — p|. Then the
convergence factor of the approximated eigenspace of dimen-

sionmis@( Am — 1
)\m—l—l_,u

) (subspace iteration algorithm).
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# Numerical property of NLCG for eigensubspaces
calculation:

Proposition 1. Let A be a matrix of order M and {u;, A;} its

eigenstates such that |A; — p| < ... < [A\ps — p|. Then the
convergence factor of the approximated eigenspace of dimen-

sionmisO( Am — 1
/\m—l—l_,u

) (subspace iteration algorithm).

® = if m, = dimension of the closest cluster near p then:

(. m < m,: very slow convergence
{ - m =m,: optimal convergence
-m > m,,: It depends of the 3 of other clusters

\
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#® Exemple: A diagonal, dim(A) = 20, concentrated
spectrum:

sp(A) = {0.99,1.02,1.03,1.04,1.05, ... ,3.99, 4.02,4.03, 4.04, 4.05}
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#® Exemple: A diagonal, dim(A) = 20, concentrated
spectrum:

sp(A) = {0.99,1.02,1.03,1.04,1.05, ... ,3.99, 4.02,4.03, 4.04, 4.05}
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F(k), m =5 et6.
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= f(k), m =10 et 11.
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; —_

#® = convergence of sub-clusters of eigenvalues gives
another criterium of partitionning of [a, b], related to
physical properties.
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® |n a few words:

(1) - Spectral slice of an energy band with
bounds to be chosen

(2) - Filling of energy regions via calculations of
eigensubspaces, with local reorthog. Two ways:

[ (2.1) - Lanczos on (H — \1)~?

= “Classical” partitionning.

(2.2) - NLCG on (H — )\I)?

= Physical partitionning related to the
\ clusters of eigenvalues.

/N
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® |n a few words:

(1) - Spectral slice of an energy band with
bounds to be chosen

(2) - Filling of energy regions via calculations of
eigensubspaces, with local reorthog. Two ways:

[ (2.1) - Lanczos on (H — \1)~?

= “Classical” partitionning.

(2.2) - NLCG on (H — )\I)?

= Physical partitionning related to the
\ clusters of eigenvalues.

/N

#® “Long distance orthogonality”: theorems guantifying
the speed of orthog. between 2 vectors for different
algorithms (numerical and theoretical studies).
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