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�� �

� � �

Université Paris-Sud - Laboratoire de Mathématiques

� � �

CEA/DAM, Ile de France

Paris, may 2004 – p.1/13



Framework of the problem
Calculation of the ground-state energy

� � ��� � � , for a
fixed geometry.
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Numerical resolution: discretization in a finite dimension
basis (Galerkin method)

generalized eigenvalue problem

: discretized KS Hamiltonian; : overlap matrix
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Numerical resolution
Direct minimization of

� � ��� � � , by nonlinear conjugate
gradient (NLCG) algorithm

� ���

�
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: wave vectors;
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: KS orbitals

At SCF convergence:��� �	 � � � �� � � � � � � � ��� �	 � � � �� � � � � � �

Complexity (orthogonalization of the ): or
. (matrix/vectors products in )
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Specificities of the ABINIT code and difficulties:

for each SCF loop, calculation of pseudo-eigenvectors
(i.e. not converged)

� 


: full symmetric matrix, of very large dimension and
not explicitly known

the eigenvalues calculation is intrinsically not parallel

Goal: propose parallel methods to realize calculations on
more complex molecular systems.
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New algorithm (1)
calculation of exact eigenvectors instead of
pseudo-eigenvectors 
 orthogonality of the

� � (
� 


symmetric)
such that

� ���

�
� � �

� � � 

�

� � � � � � � � � � �

spectral partitionning of an energy band
bounds to be found (i.e. spectrum localization).

Proposals for the choice of and :

given by the code user
Lanczos algorithm
estimate of the eigenvalue of
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Spectral partitionning: details

Iterative algorithm with dynamic allocations of shifts
� �

until

� �� � �

is completely explored.

a bλ λi j

eigenvalues in research of
eigenvalues ( .

Paris, may 2004 – p.6/13



Spectral partitionning: details

Iterative algorithm with dynamic allocations of shifts
� �

until

� �� � �

is completely explored.

a bλ λi j

� � �

eigenvalues in

� �� � � 
 � �

research of
eigenvalues (

� � � � � �

.

Paris, may 2004 – p.6/13



To take into account of multiple eigenvalues:
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where

�
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�
� is the number of blocks of � wave

vectors ( � � � �� �� �� � �

).

Theoretical complexity:
sequentially.
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Results and conclusions:

Principle of the algorithm without reorthog. is validated
(


 �� � �

) but ... real complexity: � � � � � � �

with
� �

because:

calculation of exact eigenvalues by NLCG can be very
hard. The difficulties are:

numerical: cond

physical: spectrum of Hamiltonians has not a
regular distribution

and are invariant under any unitary tranformation

proposal of a new algorithm (2) with calculations of
clusters of eigenvalues.
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New algorithm (2)
Calculation of eigensubspaces with local reorthog. by

� NLCG on

� � 

�

� � � � �

� Lanczos on

� � 

�

� � � ��� �

Hierarchy of algorithms:

Original ABINIT, full reorthog.
SCF convergence

algo. (2), with partial reorthog.
convergence of eigenspaces

algo. (1), without reorthog.

bad convergence of eigenvectors

Paris, may 2004 – p.9/13



New algorithm (2)
Calculation of eigensubspaces with local reorthog. by

� NLCG on

� � 

�

� � � � �

� Lanczos on

� � 

�

� � � ��� �
Hierarchy of algorithms:

Original ABINIT, full reorthog.

�� � � �


 SCF convergence

�

algo. (2), with partial reorthog.


 convergence of eigenspaces

�

algo. (1), without reorthog.

�� � �
���� ��

�


 bad convergence of eigenvectors

Paris, may 2004 – p.9/13



Numerical property of NLCG for eigensubspaces
calculation:

Proposition 1. Let

�

be a matrix of order and
��� �� � � �

its

eigenstates such that

� � � � � � �� � � � � � 	 � � � . Then the
convergence factor of the approximated eigenspace of dimen-

sion � is

�

�������
��� � �

��� 	 � � �
������� (subspace iteration algorithm).

if dimension of the closest cluster near then:

: very slow convergence
: optimal convergence
: it depends of the of other clusters
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Exemple:

�

diagonal,
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, concentrated
spectrum:

sp
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convergence of sub-clusters of eigenvalues gives
another criterium of partitionning of , related to
physical properties.
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In a few words:

(1) - Spectral slice of an energy band with
bounds to be chosen
(2) - Filling of energy regions via calculations of
eigensubspaces, with local reorthog. Two ways:
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�
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��

(2.1) - Lanczos on

� � 

�

� � � �� �


 “Classical” partitionning.
(2.2) - NLCG on

� � 

�

� � � � �


 Physical partitionning related to the
clusters of eigenvalues.

“Long distance orthogonality”: theorems quantifying
the speed of orthog. between 2 vectors for different
algorithms (numerical and theoretical studies).
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