Electronic Excitations of Cu₂O: within GW Approximation

<u>Fabien Bruneval</u>, Nathalie Vast, Lucia Reining and Valerio Olevano

Laboratoire des Solides Irradiés, CNRS-CEA, École Polytechnique 91128 Palaiseau cedex, France

Abinit Workshop 04 Paris, May 10, 2004

Outline

- $\diamond \, {\bf Introduction}$
- \diamond Importance of Semicore States in GW
- $\diamond \textbf{ Failure of GW in } \mathbf{Cu}_2 \mathbf{O}$
- \diamond Conclusion

Outline

\Rightarrow Introduction

- \diamond Importance of Semicore States in GW
- $\diamond \textbf{ Failure of GW in } \mathbf{Cu}_2 \mathbf{O}$
- \diamond Conclusion

Cu_2O : a simple oxide ?

 Cu_2O should be a suitable material to address the issue of 3d valence electrons:

- \sharp non magnetic
- \ddagger simple cubic structure

 \ddagger closed d shell

Cu $3s^23p^63d^{10}$ O $2s^22p^6$ \Rightarrow not highly correlated

Cu_2O : A textbook material for excitons

Many excitonic series well studied since 60's

First Exciton Series

Experiment from P. W. Baumeister, *Phys. Rev.*, **121**, 359 (1961).

Cu_2O : A textbook material for excitons

Many excitonic series well studied since 60's

Other Exciton Series

Experiment from M. Balkanski, Solid State Com., 5, 85 (1966).

Cu_2O : A textbook material for excitons

Many excitonic series well studied since 60's

Other Exciton Series

Experiment from M. Balkanski, Solid State Com., 5, 85 (1966).

$Cu_2O: A textbook material for theory$

- ◊ Delocalised states: Cu 4s4p ⇒ dispersive bands

Outline

- $\diamond \, {\bf Introduction}$
- \Rightarrow Importance of Semicore States in GW
 - $\diamond \textbf{ Failure of GW in } \mathbf{Cu}_2 \mathbf{O}$
 - \diamond Conclusion

Should we include semicore states ?

There is an energetic separation.

The semicore is very deep ! $\sim 50~{\rm eV}$ below valence

Should we include semicore states ?

There is no spatial separation.

The maxima of the wavefunctions are located at the same place ! Which valence do we choose ?

Effect of semicore on LDA results

Slight effect on bandstructure

No reason not to trust results without semicore

Effect of semicore on GW results

Calculation with semicore

Effect of semicore on GW results

Calculation without semicore

Outline

- $\diamond \, {\bf Introduction}$
- \diamond Importance of Semicore States in GW
- $\Rightarrow \textbf{Failure of GW in } \mathbf{Cu}_2\mathbf{O}$
 - \diamond Conclusion

LDAGWExpIntrinsic Gap0.542.17Optical Threshold2.55

LDAGWExpIntrinsic Gap0.542.17Optical Threshold1.232.55

DFT vs Green's function theory

Kohn-Sham Equations:

$$\begin{bmatrix} -\frac{1}{2}\nabla^2 + V_{ext}(\mathbf{r}) + \int d\mathbf{r}' \frac{\rho(\mathbf{r}')}{|\mathbf{r}' - \mathbf{r}|} \end{bmatrix} \phi_i(\mathbf{r}) \\ + V_{xc}(\mathbf{r})\phi_i(\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r}) \end{cases}$$

Equation of motion of Quasiparticles:

$$\begin{bmatrix} -\frac{1}{2}\nabla^2 + V_{ext}(\mathbf{r}) + \int d\mathbf{r}' \frac{\rho(\mathbf{r}')}{|\mathbf{r}' - \mathbf{r}|} \end{bmatrix} \phi_i(\mathbf{r}) \\ + \int d\mathbf{r}' \Sigma(\mathbf{r}, \mathbf{r}', \epsilon_i) \phi_i(\mathbf{r}') = \epsilon_i \phi_i(\mathbf{r}) \end{bmatrix}$$

Practical approximations in standard GW

$$\Sigma(\mathbf{r}_1, \mathbf{r}_2, \omega) = i \int d\omega' G(\mathbf{r}_1, \mathbf{r}_2, \omega') W(\mathbf{r}_1, \mathbf{r}_2, \omega' - \omega)$$

 $G(\mathbf{r}_1, \mathbf{r}_2, \omega)$ is assumed to be the LDA Green's function:

$$G(\mathbf{r}_1, \mathbf{r}_2, \omega) = \sum_i \frac{\phi_i^{LDA}(\mathbf{r}_1)\phi_i^{LDA\star}(\mathbf{r}_2)}{\omega - \epsilon_i^{LDA} \pm i\eta}$$

- Use of pseudowavefunctions made for LDA not for GW Operators' expectation values might be wrong because of the core region.
- G^{LDA} might be very different from G^{GW} Lack of self-consistency ?

Practical approximations in standard GW

 $W(\mathbf{r}_1, \mathbf{r}_2, \omega)$ is the dynamically screened coulomb interaction:

$$W(\mathbf{r}_1, \mathbf{r}_2, \omega) = \int d\mathbf{r}_3 v(\mathbf{r}_1, \mathbf{r}_3) \varepsilon^{-1}(\mathbf{r}_3, \mathbf{r}_2, \omega)$$

We take into account the full spatial complexity of W, but

• Its frequency dependence is fit on a single pole.

 $\Sigma - V_{xc}$ is assumed to be a first order perturbation of H^{LDA} :

$$\epsilon_i^{GW} = \epsilon_i^{LDA} + \langle \phi_i^{LDA} | \Sigma(\epsilon_i^{GW}) - V_{xc} | \phi_i^{LDA} \rangle$$

• Non diagonal terms $\langle \phi_i^{LDA} | \Sigma(\epsilon_i^{GW}) - V_{xc} | \phi_j^{LDA} \rangle$ might be large if $\phi_i^{GW} \neq \phi_i^{LDA}$

Failure of PP + PW scheme ?

Comparison with PAW results from Brice Arnaud, University of Rennes

 \Rightarrow Eigenvalues: OK

Failure of PP + PW scheme ?

Comparison with PAW results from Brice Arnaud, University of Rennes

 \Rightarrow Eigenfunctions: OK

Plasmon Pole Model in ABINIT

Assuming this ω dependence:

$$\varepsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},i\omega) = \delta_{\mathbf{G},\mathbf{G}'} + \frac{\Omega_{\mathbf{G}\mathbf{G}'}^2(\mathbf{q})}{(i\omega)^2 - \tilde{\omega}_{\mathbf{G},\mathbf{G}'}^2(\mathbf{q})}$$

two-parameter model fit on two frequencies:

$$\begin{split} & \omega = 0 \\ & \mathbf{and} \ \omega \approx i \omega_{\mathbf{plasma}} \end{split}$$

Getting rid of Plasmon Pole Model in ABINIT

Performing convolution along real axis

$$\Sigma(\omega) = i \int d\omega' G(\omega') W(\omega' - \omega)$$

Getting rid of Plasmon Pole Model in ABINIT

Performing convolution along imaginary axis

$$\Sigma(i\omega) = \int d\omega' G(i\omega') W(i\omega' - i\omega)$$

Getting rid of Plasmon Pole Model in ABINIT

Analytic continuation of Σ :

$$P(z) = \frac{a_0 + a_1 z + a_2 z^2 + \dots + a_N z^N}{b_0 + b_1 z + b_2 z^2 + \dots + b_M z^M}$$

fit on imaginary points then, extrapolation to real axis

Details might be found (for instance) in S. Lebegue et al., Phys. Rev. B, 67, 155208 (2003).

Failure of Plasmon Pole Model ?

Calculating

$$\varepsilon_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q},\mathbf{i}\omega)$$

and then

 $\langle \phi_i^{LDA} | \Sigma(i\omega) - V_{xc} | \phi_i^{LDA} \rangle$

	GW with PPM	GW without PPM	\mathbf{Exp}
Intrinsic Gap	1.37	1.35	2.17
Optical Threshold	1.63	1.78	2.55

Plasmon Pole Model is accurate around the gap

Are LDA wavefunctions close to GW ones ?

 $\epsilon_i^{LDA} + \langle \phi_i^{LDA} | \Sigma^{GW}(\epsilon_i^{GW}) - V_{xc}^{LDA} | \phi_i^{LDA} \rangle$

i,j	42	43	44	48	49	50
42	-0.3064	0.0001	-0.0001	-0.2524	-0.1678	-0.0220
43	0.0001	-0.3068	0.0000	-0.1662	0.1368	0.0767
44	-0.0001	0.0000	-0.3072	-0.0145	0.1476	-0.2488
48	-0.2524	-0.1662	-0.0145	11.2221	0.0000	0.0000
49	-0.1678	0.1368	0.1476	0.0000	11.2220	0.0000
50	-0.0220	0.0767	-0.2488	0.0000	0.0000	11.2221

First order perturbation theory:

 $\epsilon^{GW} = -0.3072 \, \, \mathbf{eV}$

Diagonalization:

 $\Rightarrow \epsilon^{GW} = -0.3112 \text{ eV}$

and

$$|\langle \phi_i^{LDA} | \phi_i^{GW} \rangle|^2 = 0.998$$

Are LDA wavefunctions close to GW ones ?

 $\epsilon_i^{LDA} + \langle \phi_i^{LDA} | \Sigma^{GW}(\epsilon_i^{GW}) - V_{xc}^{LDA} | \phi_i^{LDA} \rangle$

i,j	42	43	44	48	49	50
42	-0.3064	0.0001	-0.0001	-0.2524	-0.1678	-0.0220
43	0.0001	-0.3068	0.0000	-0.1662	0.1368	0.0767
44	-0.0001	0.0000	-0.3072	-0.0145	0.1476	-0.2488
48	-0.2524	-0.1662	-0.0145	11.2221	0.0000	0.0000
49	-0.1678	0.1368	0.1476	0.0000	11.2220	0.0000
50	-0.0220	0.0767	-0.2488	0.0000	0.0000	11.2221

First order perturbation theory:

 $\epsilon^{GW} = -0.3072 \, \, \mathbf{eV}$

Diagonalization:

 $\Rightarrow \epsilon^{GW} = -0.3112 \text{ eV}$

and

$$|\langle \phi_i^{LDA} | \phi_i^{GW} \rangle|^2 = 0.998$$

Lack of self-consistency ?

Update of eigenvalues used in G and W Not quantitative Just qualitative

	$\mathbf{G}_0 \mathbf{W}_0$	$\mathbf{G}\mathbf{W}_0$	$\mathbf{G}_0 \mathbf{W}$	Exp
Intrinsic Gap	1.37	1.41	1.50	2.17
Optical Threshold	1.63	1.69	1.92	2.55

Outline

- $\diamond \, {\bf Introduction}$
- \diamond Importance of Semicore States in GW
- $\diamond \textbf{ Failure of GW in } \mathbf{Cu}_2 \mathbf{O}$
- \Rightarrow Conclusion

Bethe-Salpeter Calculation

