
XML in ABINIT

X. Gonze

ParisParis 20042004

May 10, 2004 XML in ABINIT

OverviewOverview

l An introduction to XML (4/5 of the talk)
l In ABINIT :

– CML I/O
– Brief description of the XMLf90 lib of Alberto Garcia

Tackling the data interchange problem !
XML + NetCDF
Code reuse !

May 10, 2004 XML in ABINIT

Why is XML important ?Why is XML important ?

l “For the first time in the history of computing, we have a
universally acceptable syntax rich enough to handle all kinds
of structured information”

l “XML represents a fundamental change in computing ... away
from proprietary file and data formats to a world of open
interchange”

l “The driver for this change is the desire by companies and
individuals to access and exploit the mass of information
made available via the internet”

(Douglas Lovell, IBM T.J. Watson Research Center)

May 10, 2004 XML in ABINIT

Goals of this Goals of this introductionintroduction

l To answer the following questions :
– What is the XML syntax ?
– What are its advantages over other data

representations ?
– What is a well-formed XML document ?
– What is a valid XML document ?
– What are the existing tools and standards to

manipulate XML files, especially in view of
interchange of data, over the Web ?

May 10, 2004 XML in ABINIT

OverviewOverview

l HTML : the Web markup language

l What is XML ? Rules for a well-formed document

l Defining a markup language :
– DTDs (Document Type Declarations)
– XML Schemas

l Climbing the tree structure of XML : XPath

l Programming interfaces : DOM and SAX

l Transformation of a XML document : XSLT

l XLink, XQuery, RDF, SOAP

May 10, 2004 XML in ABINIT

HTMLHTML

l Hyper Text Markup Language

l Pros
• Easy to use (proliferation of web pages)
• Hyperlink support, multimedia support
• Very good industry support for the user
• Authors write pages displaying information
• Portability and easy delivery over the network

l Cons
• A fixed set of tags
• Content and presentation mixed together

May 10, 2004 XML in ABINIT

HTML : an exampleHTML : an example

<HTML> <HEAD>
 <TITLE>Welcome-Readme</TITLE>
 </HEAD>
<BODY>
 <H1>
 <CENTER> </CENTER>
 </H1>
<P> <HR>
<p></P> Dear user of ABINIT (in short : ABINITioner),
<p> If this is the first time that you have access to ABINIT,
 or that you receive an ABINIT announcement, welcome !
<p> On the Web site, you will find a lot of things, including installation notes for
 different versions
 of ABINIT,pseudopotentials,
 some utilities,

May 10, 2004 XML in ABINIT

What is XML ?What is XML ?

• XML stands for EXtensible Markup Language

• XML is a “meta-language” to devise markup languages

• XML tags are not predefined in XML. You must define your
own tags

• XML syntax is strict
• XML uses a Document Type Definition (DTD) or an XML

Schema to formulate a language
• XML with a DTD or XML Schema is designed to be self-

descriptive
• Proposed by the W3C (World Wide Web consortium) in 1999
• Ancestor : SGML (1980, already DTDs, but was too complex)

May 10, 2004 XML in ABINIT

XML LanguagesXML Languages

l XML = Meta-language used to define languages

l Examples of languages defined using XML:

• MathML - Mathematical Markup Language

• XML Schema - Schema for XML documents

• SVG - Scalable Vector Graphics (a bit like postscript)

• XSL - eXtensible Style Language

• XHTML - X Hyper Text Markup Language

• CML - Chemical Markup Language

• (as of today, hundreds of DTDs available)

May 10, 2004 XML in ABINIT

A first XML exampleA first XML example

<?xml version="1.0"?> Header

 <List_of_participants> Root element

 <Organizer id="id1"> Element with attribute (id)

 <FirstName>Gilles</FirstName>
 <LastName>Zerah</LastName> Simple elements

 <Language>French</Language>
 <Language>English</Language> Second occurence of Language

 <Picture url="portrait.gif"/> Empty element with attribute
(link)

 </Organizer>
 </List_of_participants>

May 10, 2004 XML in ABINIT

Well-formed documentsWell-formed documents

• Each start-tag must have an associated end-tag

• Special markup for empty elements

 equivalent to :
• Elements must nest properly

 HTML : Haha <i> Hoho Hihi </i> Wrong in XML

• Documents must have a single root element

• Upper/Lower case matters

• An element cannot have empty attributes

l <DL COMPACT> <DL COMPACT="">

l Wrong Right

May 10, 2004 XML in ABINIT

Tree structure of XMLTree structure of XML

List_of_participants

Organizer id="id1"

FirstName

LastName

Language[1]

Language[2]

Picture

url=”..."

Gilles

Zerah

French

English

(think to UNIX directories
 and files, albeit with order
and allowed name repetition)

May 10, 2004 XML in ABINIT

Valid documentsValid documents

l A well-formed document does not have any constraint
about type of elements, attributes ..., and their content,

 but it fulfills the basic rules of XML
l A valid document must be a well-formed document

and must comply with a grammar
 (allowed elements, attributes ...)

l One mechanism for specifying a grammar is called a
DTD, another relies on a XML Schema

May 10, 2004 XML in ABINIT

DTDDTD

l Document Type Definition
l Set of syntactic rules for a type of document

(Grammar definition language)
l A document can be validated against a DTD

(xmllint is a simple validator on UNIX/Linux platforms)

l Grammar of a DTD file is NOT XML structured

l Definition of possible elements and their content
l Definition of possible attributes
l + ... (see later)

May 10, 2004 XML in ABINIT

DTDs DTDs : definition of elements: definition of elements

l Syntax : <!ELEMENT name content>

l Examples :
Simple content
<!ELEMENT FirstName (#PCDATA) >
<!ELEMENT LastName (#PCDATA) >
<!ELEMENT Language (#PCDATA) > PCDATA=“parsed character data”
<!ELEMENT Picture EMPTY >
Complex content
<!ELEMENT Organizer
 (FirstName,LastName,(Language)*,Picture?) >
<!ELEMENT List_of_participants (Organizer|Speaker)* >

* = O,1 or more , ? = 0 or 1 , + = 1 or more , | = “or” , “,”=“and”

May 10, 2004 XML in ABINIT

DTDs DTDs : definition of attributes: definition of attributes

l Syntax : <!ATTLIST element-name
 (multiple) attribute-name type default>

l Examples :

<!ATTLIST Organizer
 id ID #implied >
 ID=“identifier”

<!ATTLIST Picture
 url CDATA #required >
 CDATA=“character data”

May 10, 2004 XML in ABINIT

A full DTDA full DTD

<!ELEMENT FirstName (#PCDATA) >
<!ELEMENT LastName (#PCDATA) >
<!ELEMENT Language (#PCDATA) >
<!ELEMENT Picture EMPTY >
<!ELEMENT Organizer
 (FirstName,LastName,(Language)*,Picture?) >
<!ELEMENT Speaker
 (FirstName,LastName,(Language)*,Picture?) >
<!ELEMENT List_of_participants (Instructor|Student)* >
<!ATTLIST Organizer
 id ID #implied >
<!ATTLIST Speaker
 id ID #implied >
<!ATTLIST Picture
 url CDATA #required >

May 10, 2004 XML in ABINIT

Specifying a DTD in a XML file (I)Specifying a DTD in a XML file (I)

First possibility : no DTD !

<?xml version="1.0"?>
<List_of_participants>
 <Organizer id="id1">

 </Organizer>
</List_of_participants>

A XML parser will be able to check whether the document is
well-formed, but it will not check whether it is valid

May 10, 2004 XML in ABINIT

Specifying a DTD in a XML file (II)Specifying a DTD in a XML file (II)

Second possibility : mention the DTD in the document !

<?xml version="1.0"?>
<!DOCTYPE List_of_participants [
 <!ELEMENT List_of_participant ... ! Here, one mentions
 ... ! the DTD
 <!ATTLIST ... !
]>
<List_of_participants>
 <Organizer id="id1">

A XML parser will be able to check whether the document is

well-formed and whether it is valid. But the DTD would better

be independent of the document.

May 10, 2004 XML in ABINIT

Specifying a DTD in a XML file (III)Specifying a DTD in a XML file (III)

Third possibility : reference to the DTD file !

<?xml version="1.0"?>
<!DOCTYPE List_of_participants !DTD reference
 SYSTEM “List_of_participants.dtd” > !
<List_of_participants>
 <Organizer id="id1">

The List_of_participants.dtd file contains :

<!ELEMENT List_of_participant ...
<!ATTLIST ...

May 10, 2004 XML in ABINIT

Problems with the DTD mechanismProblems with the DTD mechanism

l The syntax is specific to the DTD mechanism !

 Not even an XML file ...
It is contradictory to claim to have a universally acceptable

syntax, and not use it to specify the XML languages !
l The DTD typing possibilities are very weak :
 Cannot define an integer, a float, a boolean variable, a date,
 a URL, while grammar rules might be made stronger by relying

on such types.

l So, development of new specifications :
– XML Schema (W3C recommendation, May 2001) Next slides
– RELAX NG (ISO/IEC technical recommendation)
– Schematron

May 10, 2004 XML in ABINIT

A XML Schema is an XML fileA XML Schema is an XML file

A XML file, with a particular grammar !
Also specified by a XML Schema ... of course.

Mechanism : the XML “name space”

<?xml version="1.0"?> ! The header
<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>
 (Here, one will use elements of the XML Schema

language, all prefixed by xs:...)
</xs:schema>

May 10, 2004 XML in ABINIT

XML Schemas : simple elementsXML Schemas : simple elements

l Syntax of simple elements (do not have children, do not
have attributes):

<xs:element name=“element_name” type=“element_type”/>
(Note that this syntax is the one of an empty XML element)
l Examples :
<xs:element name=“FirstName” type=“xs:string” />
<xs:element name=“LastName” type=“xs:string” />
<xs:element name=“Language” type=“xs:string” />

Different simple types are possible :
xs:string, xs:ID, xs:anyURI, xs:float, xs:double,
xs:integer, xs:boolean, xs:dateTime, ...

 (more than 40 simple types)

May 10, 2004 XML in ABINIT

XML Schemas : complex elementsXML Schemas : complex elements

l Syntax (complex elements with children, but no attribute):

<xs:element name=“...” >
 <xs:complexType>
 <xs:sequence>
 Here, the list of permitted elements, referenced
 </xs:sequence>
 </xs:complexType>
</xs:element>

l List of permitted elements : references, and occurence
specification, example :

<xs:element ref=“Unique_mandatory_element” />
<xs:element ref=“Repeated_element” max0ccurs=“unbounded” />
<xs:element ref=“Optional_element” minOccurs=“1” />

May 10, 2004 XML in ABINIT

XML Schemas : attributesXML Schemas : attributes

l Syntax of attribute definitions
 (similar to syntax of element definitions):

<xs:attribute name=“...” type=“...”/>

l Mention an attribute to an element :
<xs:element name=“...”>
 <xs:complexType>
 <xs:sequence>
 Here, the list of permitted elements, referenced
 </xs:sequence>
 <xs:attribute ref=“name_of_attribute”/> ! HERE
 </xs:complexType>
</xs:element>

May 10, 2004 XML in ABINIT

XML Schemas : a full example (I)XML Schemas : a full example (I)

l The XML schema corresponding to the previous DTD
<?xml version="1.0"?>
<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>
 <xs:element name=“FirstName” type=“xs:string” />
 <xs:element name=“LastName” type=“xs:string” />
 <xs:element name=“Language” type=“xs:string” />
 <xs:attribute name=“id” type=“xs:ID” />
 <xs:attribute name=“url” type=“xs:anyURI” />
 <xs:element name=“Picture”>
 <xs:complexType>
 <xs:attribute ref=“url”/>
 </xs:complexType>
 </xs:element>
 (continued ...)

May 10, 2004 XML in ABINIT

XML Schemas : a full example (II)XML Schemas : a full example (II)

 <xs:element name=“Organizer”>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref=“FirstName”/>
 <xs:element ref=“LastName”/>
 <xs:element ref=“Language” min0ccurs=“0”

max0ccurs=“unbounded” >
 <xs:element ref=“Picture” min0ccurs=“0” >
 </xs:sequence>
 <xs:attribute ref=“id”/>
 </xs:complexType>
 </xs:element>

 (continued ...)

May 10, 2004 XML in ABINIT

XML Schemas : a full example (III)XML Schemas : a full example (III)

 <xs:element name=“Speaker”>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref=“FirstName”/>
 <xs:element ref=“LastName”/>
 <xs:element ref=“Language” min0ccurs=“0”

max0ccurs=“unbounded” >
 <xs:element ref=“Picture” min0ccurs=“0” >
 </xs:sequence>
 <xs:attribute ref=“id”/>
 </xs:complexType>
 </xs:element>

 (continued ...)

May 10, 2004 XML in ABINIT

XML Schemas : a full example (IV)XML Schemas : a full example (IV)

 <xs:element name=“List_of_participants”>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref=“Organizer” min0ccurs=“0”

max0ccurs=“unbounded” >
 <xs:element ref=“Speaker” min0ccurs=“0”

max0ccurs=“unbounded” >
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema> (the end)

XML Schema is much more verbose than the
corresponding DTD !

May 10, 2004 XML in ABINIT

Beyond the language definitionBeyond the language definition

l Suppose that we have a DTD or a XML Schema,
and a set of XML documents that are well-formed
and valid (can be validated by the DTD or XML
schema)

l This rich and well-defined structure allows other
layers of standards !

l XPath, API (DOM and SAX), XSLT, XLink, XQuery,
RDF, SOAP ... (so many new acronyms)

May 10, 2004 XML in ABINIT

XPathXPath//XPointer XPointer (I)(I)

l A standard to address any part or set of parts of an XML document

l Very similar to UNIX/Linux paths

l Examples of absolute paths :

 / select the root node of the document

 /List_of_participants/Instructor

 select the “Instructor” node(s), children of the List_of_participants node

 /List_of_participants/Instructor/Language[2]

 select the second “Language” node, in the specified path

 /List_of_participants/Instructor/Language[2]/text()

 select the text in the second “Language” node, in the specified path

 /List_of_participants/Instructor/@id

 select the “id” attribute in the “Instructor” node(s), in the specified path

 //Language select all the “Language” node(s), descendants of the root

May 10, 2004 XML in ABINIT

XPath XPath (II)(II)

l Examples of relative paths (need to know the “context node”):

 .. select the parent node

 Instructor select the “Instructor” child(ren), if any

l Also :
– wild cards ;
– predicates ;
– axis addressing (child,parent,self,attribute,ancestor,descendant, ...)
– functions (count the number of nodes ...) ;
– boolean logic

May 10, 2004 XML in ABINIT

APIAPI

l Application Programming Interfaces
l Structure of XML document known

 possibility to define
 standardized parsing methodologies
 (please, do not reinvent the wheel)

Parsers written in : Python, Perl, C, C++, Java, F90 ...
Two standardized API methodologies :
SAX (Simple API for XML)
DOM (Document Object Model)

May 10, 2004 XML in ABINIT

SAXSAX

l Simple API for XML

l Idea 1 : Read the XML document sequentially

l Idea 2 : Consider each element, attribute, etc ... , as an
“event”, that will trigger an “action”

l Idea 3 : SAX routines to be integrated in a language-specific
parser, that includes also routines defining the “action”
triggered by each event type

l Advantage : the document need not be stored in memory

l However, the on-the-flight treatment of the events is not
always easy to code !

May 10, 2004 XML in ABINIT

DOMDOM

l Document Object Model

l Idea : read the whole XML document, and represent it by a
tree in main memory

l Need : the possibility to handle the tree data structure -
allocation of pointers (F77 NO, F90 OK)

l The DOM specification is a recommendation of W3C

l Type of objects (all DOM applications use the same names !):
Document, Element, Attr, Text ...

l Methods to act on the objects : set(), get() ...

l DOM usually based on SAX !

May 10, 2004 XML in ABINIT

Transformation of XML documentsTransformation of XML documents

l Idea : one wants to automate (and standardize) the
generation of .html, .pdf, .ps, .tex, ... or even other XML files
from the XML documents

l Oldest technique : Cascading Style Sheet (formatting)

l New approach (XML based !) :

 EXtensible Stylesheet Language for Transformations

XML

HTML

PDF TEXPS

XML

May 10, 2004 XML in ABINIT

Other acronymsOther acronyms

l XLink : XML Linking Language
– Allows to create (hyper)links between resources (XML documents)
– Recommendation of the W3C (http://www.w3.org/TR/xlink)

l XQuery : XML Query Language
– a query language for databases, based on XPath
– Similarities with SQL
– http://www.w3.org/XML/Query

l RDF : Resource Description Framework
– a standard vocabulary to represent Metadata
– goal : interoperability between applications that exchange

informations to be treated automatically (Web oriented)
– http://www.w3.org/TR/REC-rdf-syntax

l SOAP : Simple Object Access Protocol
– protocol for exchaning information in a distributed environment
– http://www.w3.org/TR/SOAP

May 10, 2004 XML in ABINIT

 In ABINIT ...

May 10, 2004 XML in ABINIT

Use of CMLUse of CML

A CML file :

<?xml version="1.0" encoding="iso-8859-1"?>
<molecule id="crystal1" xmlns="http://www.xml-cml.org/schema/cml2/core">
 <crystal>
 <scalar title="a" units="angstrom">10.583544166</scalar>
 <scalar title="b" units="angstrom">10.583544166</scalar>
 <scalar title="c" units="angstrom">15.875316249</scalar>
 <scalar title="alpha" units="degrees">90.000</scalar>
 <scalar title="beta" units="degrees">90.000</scalar>
 <scalar title="gamma" units="degrees">90.000</scalar>
 </crystal>
 <atomArray>
 <atom id="1" elementType="H" xFract="0.125" yFract="0.000" zFract="0.666666666667"/>
 <atom id="2" elementType="C" xFract="0.250" yFract="0.375" zFract="0.666666666667"/>
 <atom id="3" elementType="O" xFract="0.750" yFract="0.750" zFract="0.500"/>
 <atom id="4" elementType="Si" xFract="0.000" yFract="0.000" zFract="0.000"/>
 </atomArray>
</molecule>

May 10, 2004 XML in ABINIT

Reading a CML fileReading a CML file

Input variable keyword :
cmlfile

Should be followed by the CML filename string :
(example from Test_v3/t68.in)

This file is to be complemented by a CML file.
Here, only non-CML data are stored.
The system will be : Mo surface 5 layers of 2 atoms + 3 of vacuum

 cmlfile ../t68.in_CML.xml
 diemac 1.0d0
 diemix 0.125d0
 ecut 5.5

May 10, 2004 XML in ABINIT

Reading a CML file (2)Reading a CML file (2)

Will initialize :
acell, angdeg, ntypat, natom, typat, xred (xcart)
Might also initialize (if present) :
nsym, symrel, tnons

Note : Superceded by information present in the usual
input file. Like a layer of initialisation between
the default values and the actual values in the
input file.

Routines : append_cml2.f, with parent importcml.f
 and children findmarkup.f, getattribute.f
Idea : to append the CML file, properly treated,
 to the ABINIT input file string.
BUT THIS PARSER IS VERY PRIMITIVE !

May 10, 2004 XML in ABINIT

Printing a CML filePrinting a CML file

Input variable keyword :
prtcml

Should be followed by a positive integer ...
Will write, in a CML file, crystal parameters,

symmetry operations,then, for each atom, its
number, its type, and its reduced coordinates.

THIS OUTPUT IS OK !

Might be read by other software accepting
CML2 syntax !

May 10, 2004 XML in ABINIT

Other possible future XMLOther possible future XML usagesusages

Pseudopotential files :
should be produced by pseudopotential generators,
then read by ABINIT ...

Might solve the problem of pseudopotential files
formats ? ... Only if different softwares (to

generate psps, and then, to read psps) agree
on the specifications of a XML language ...

OTHER OUTPUT FILES ?
Might be also produced using NetCDF ?
Open discussion ...

May 10, 2004 XML in ABINIT

The XMLf90 libraryThe XMLf90 library

Present XML parsing capabilities of ABINIT are too weak !

One year ago, there were no standard XML parser in F90.

Due to the FSAtom action, A. Garcia has developed a library called XMLf90, for
parsing XML from FORTRAN 90 codes ...

XMLf90-1.1 is present in ABINITv4.3

Location : ~ABINIT/Lib_XMLf90/xmlf90-1.1.tar

In ~ABINIT, issue

 make xmlf90

This produces a directory xmlf90-1.1, with different subdirectories :

Examples LICENSE ReleaseNotes-1.1 macros xpath

KNOWN_ISSUES README Tutorial sax

Still have to compile ... (integration is less advanced than NetCDF)

SAX methodology + XPATH methodology

May 10, 2004 XML in ABINIT

SummarySummary

l A brief introduction to XML
l Status of CML in ABINIT
l The XMLf90 library

