Implementation of the Strain Perturbation in ABINIT

D. R. Hamann,^{1,2,3} Xifan Wu¹ David Vanderbilt,¹ Karin Rabe,¹

¹Department of Physics and Astronomy, Rutgers University, Piscataway, NJ ²Bell Laboratories, Lucent Technologies, Murray Hill, NJ ³Mat-Sim Research LLC, Murray Hill, NJ

Supported by The Center for Piezoelectrics by Design, ONR grant N00014-01-1-0365 and Mat-Sim Research, *www.mat-simresearch.com*

Overview

- *Goal*: Direct calculation of the elastic and piezoelectric tensors and related quantities
- Strain and the Abinit reduced-coordinate formulation
- Brief review of density functional perturbation theory
- Response function (RF) code organization
- Development process design
- Special issues: nonlocal pseudopotentials, symmetry, non-linear core corrections, cutoff smoothing, metals
- Using: new input and output
- Atom coordinate relaxation and anaddb post processing
- Future development issues
- (Appendix)

Strain tensor $\eta_{\alpha\beta}$ as a perturbation

• Strain really only changes the positions of the atomic (pseudo)potentials,

$$V_{ext}(\mathbf{r}) = \sum_{\mathbf{R}} \sum_{\tau}^{\text{cell}} V_{\tau}(\mathbf{r} - \tau - \mathbf{R}) \xrightarrow{\eta} V_{ext}(\mathbf{r}) = \sum_{\mathbf{R}} \sum_{\tau}^{\text{cell}} V_{\tau}[\mathbf{r} - (1+\eta) \cdot \tau - (1+\eta) \cdot \mathbf{R}].$$

- However, this causes unique problems for perturbation expansions
 - Infinite lattice view: the strain perturbation can never be small.
 - Single unit cell view: strain changes the periodic boundary conditions
 - Wave functions of the strained lattice cannot be expanded in terms of those of the unstrained lattice.
- The "canonical transformation" formulation changes structure of DFPT calculation from that for "ordinary" perturbations.⁽¹⁾

(1) S. Baroni, P. Giannozzzi, and A. Testa, Phys. Rev. Lett. 59, 2662 (1987).

Abinit reduced coordinate (~) formulation

- Every lattice, unstrained or strained, is a unit cube in reduced coordinates.
 - Primitive real and reciprocal lattice vectors define the transformations:

$$X_{\alpha} = \sum_{i} R_{\alpha i}^{\mathrm{P}} \tilde{X}_{i}, \quad K_{\alpha} \equiv (k_{\alpha} + G_{\alpha}) = \sum_{i} G_{\alpha i}^{\mathrm{P}} \tilde{K}_{i}, \quad \sum_{\alpha} R_{\alpha i}^{\mathrm{P}} G_{\alpha j}^{\mathrm{P}} = 2\pi \delta_{ij}$$

- Cartesian indices $\alpha, \beta, \dots = 1, 3$ and reduced indices $i, j, \dots = 1, 3$
- Every term in the DFT functional can be expressed in terms of dot products and the unit cell volume Ω .
 - Dot products and Ω in reduced coordinates are computed with metric tensors,

$$\mathbf{X}' \cdot \mathbf{X} = \sum_{ij} \tilde{X}'_{i} \Xi_{ij} \tilde{X}_{j}, \quad \mathbf{K}' \cdot \mathbf{K} = \sum_{ij} \tilde{K}'_{i} \Upsilon_{ij} \tilde{K}_{j}, \quad \mathbf{\Omega} = (\det[\Xi_{ij}])^{1/2}$$

• Strain is now a "simple" parameter of a density functional whose wave functions have invariant boundary conditions.

Abinit reduced coordinate (~) formulation

• Strain derivatives act **only** on the metric tensors,

$$\begin{split} \Xi_{ij}^{(\alpha\beta)} &\equiv \frac{\partial \Xi_{ij}}{\partial \eta_{\alpha\beta}} = R_{\alpha i}^{\mathrm{P}} R_{\beta j}^{\mathrm{P}} + R_{\beta i}^{\mathrm{P}} R_{\alpha j}^{\mathrm{P}}, \quad \Upsilon_{ij}^{(\alpha\beta)} \equiv \frac{\partial \Upsilon_{ij}}{\partial \eta_{\alpha\beta}} = -G_{\alpha i}^{\mathrm{P}} G_{\beta j}^{\mathrm{P}} - G_{\beta i}^{\mathrm{P}} G_{\alpha j}^{\mathrm{P}} \\ \Xi_{ij}^{(\alpha\beta\gamma\delta)} &\equiv \frac{\partial^{2} \Xi_{ij}}{\partial \eta_{\gamma\delta} \partial \eta_{\alpha\beta}} = \delta_{\alpha\gamma} (R_{\beta i}^{\mathrm{P}} R_{\delta j}^{\mathrm{P}} + R_{\delta i}^{\mathrm{P}} R_{\beta j}^{\mathrm{P}}) + \delta_{\beta\gamma} (R_{\alpha i}^{\mathrm{P}} R_{\delta j}^{\mathrm{P}} + R_{\delta i}^{\mathrm{P}} R_{\alpha j}^{\mathrm{P}}) \\ &+ \delta_{\alpha\delta} (R_{\beta i}^{\mathrm{P}} R_{\gamma j}^{\mathrm{P}} + R_{\gamma i}^{\mathrm{P}} R_{\beta j}^{\mathrm{P}}) + \delta_{\beta\delta} (R_{\alpha i}^{\mathrm{P}} R_{\gamma j}^{\mathrm{P}} + R_{\gamma i}^{\mathrm{P}} R_{\alpha j}^{\mathrm{P}}), \end{split}$$

• Ω has uniquely simple derivatives for **Cartesian Strains**

$$\frac{\partial \mathbf{\Omega}}{\partial \eta_{\alpha\beta}} = \delta_{\alpha\beta} \mathbf{\Omega}, \frac{\partial^2 \mathbf{\Omega}}{\partial \eta_{\alpha\beta} \partial \eta_{\gamma\delta}} = \delta_{\alpha\beta} \delta_{\gamma\delta} \mathbf{\Omega}$$

Key decision: strain will be Cartesian throughout the code
 Existing perturbations will remain in reduced-coordinates

Stress and strain notation

Cartesian	XX	уу	ZZ	yz	XZ	ху
Cartesian	11	22	33	23	13	12
Voigt	1	2	3	4	5	6
ipert, idir	natom+3, 1	natom+3, 2	natom+3, 3	natom+4, 1	natom+4, 2	natom+4, 3

- Only the symmetric part of the strain tensor matters
 - Antisymmetric strains are simply rotations
- All forms used at various places internally and in output

Density Functional Perturbation Theory

• All quantities are expanded in power series in a DF energy parameter λ ,

 $X(\lambda) = X^{(0)} + \lambda X^{(1)} + \lambda^2 X^{(2)} + \cdots, \quad X = E_{el}, T, V_{ext}, \Psi_{\alpha}(\mathbf{r}), n(\mathbf{r}), \varepsilon_{\alpha}, H$

- Solutions $\psi^{(0)}$ of Kohn-Sham equation minimize the usual DFT functional $E^{(0)}$ $H^{(0)} |\psi_{\alpha}^{(0)}\rangle = \varepsilon_{\alpha}^{(0)} |\psi_{\alpha}^{(0)}\rangle.$
- The variational functional for $E^{(2)}$ is minimized by solutions $\psi^{(1)}$ of the selfconsistent Sternheimer equation

$$P_{c}(H^{(0)} - \varepsilon_{\alpha}^{(0)})P_{c}|\psi_{\alpha}^{(1)}\rangle = -P_{c}H^{(1)}|\psi_{\alpha}^{(0)}\rangle,$$

- where P_c is the projector on unoccupied states (conduction bands) and

$$H^{(1)} = T^{(1)} + V_{ext}^{(1)} + V_{Hxc}^{(1)}, \quad V_{Hxc}^{(1)} = \frac{\partial}{\partial\lambda} \frac{\delta E_{Hxc}}{\delta n(\mathbf{r})} \bigg|_{n^{(0)}} + \int \frac{\delta^2 E_{Hxc}}{\delta n(\mathbf{r}) \delta n(\mathbf{r}')} n^{(1)}(\mathbf{r}') d\mathbf{r}',$$
$$n^{(1)}(\mathbf{r}) = \sum_{\alpha}^{\text{occ}} [\psi_{\alpha}^{*(1)}(\mathbf{r}) \psi_{\alpha}^{(0)}(\mathbf{r}) + \psi_{\alpha}^{*(0)}(\mathbf{r}) \psi_{\alpha}^{(1)}(\mathbf{r})].$$

DFPT for elastic and piezoelectric tensors

- Mixed 2nd derivatives of the energy with respect to two perturbations are needed.
 - By the "2n+1" theorem, these only require one set of 1st order wave functions,

$$E_{el}^{(\lambda_1\lambda_2)} = \sum_{\alpha}^{\text{occ}} \left\langle \psi_{\alpha}^{(\lambda_2)} \left| \left(T^{(\lambda_1)} + V_{ext}^{(\lambda_1)} + H_{Hxc0}^{(\lambda_1)} \right) \right| \psi_{\alpha}^{(0)} \right\rangle + \sum_{\alpha}^{\text{occ}} \left\langle \psi_{\alpha}^{(0)} \left| \left(T^{(\lambda_1\lambda_2)} + V_{ext}^{(\lambda_1\lambda_2)} \right) \right| \psi_{\alpha}^{(0)} \right\rangle + \frac{1}{2} \frac{\partial^2 E_{Hxc}}{\partial \lambda_1 \partial \lambda_2} \right|_{n^{(0)}},$$

- Including atomic relaxation, we need
 - Clamped-atom elastic tensor ----- $\partial^2 E_{el} / \partial \eta_{\alpha\beta} \partial \eta_{\gamma\delta}$
 - Internal strain tensor ----- $\partial^2 E_{el} / \partial \eta_{\alpha\beta} \partial \tilde{\tau}_i$
 - Interatomic force constants ------ $\partial^2 E_{el} / \partial \tilde{\tau}_i \partial \tilde{\tau}_j$ Available
 - Clamped-atom piezoelectric tensor ---- $\partial^2 E_{el} / \partial \eta_{\alpha\beta} \partial \tilde{\mathcal{E}}_{j}$
 - Born effective charges ----- $\partial^2 E_{el} / \partial \tilde{\tau}_i \partial \tilde{\mathcal{E}}_j$ Available

Response function code organization

Design of development process

- Four stages based on RF code organization and degree of complexity
 - First $\langle \mathbf{K} | H^{(1)} | 0 \rangle$, second *Sternheimer*, third $\langle 0 | H^{(2)} | 0 \rangle$, and fourth $\langle 1' | H^{(1)} | 0 \rangle$
- Stage-by-stage and term-by- term validation based on existing GS first derivatives of the total energy (1DTE's)
- First stage
 - Re-compute stress as $\langle 0 | H^{(1)} | 0 \rangle = \sum_{\mathbf{K}} \langle 0 | \mathbf{K} \rangle \langle \mathbf{K} | H^{(1)} | 0 \rangle$
 - Compare term-by term to stress breakdown available in GS calculation:

```
stress: component
                     1 of hartree stress is
                                              -8.625241635590E-04
stress: component
                     2 of hartree stress is
                                              -7.368896556922E-04
                     1 of loc psp stress is
                                               2.656792257661E-03
stress: component
stress: component
                     2 of loc psp stress is
                                               2.166978270656E-03
                     1 of xc stress is
                                          4.902613744139E-03
stress: component
                     2 of xc stress is
                                          4.902613744139E-03
stress: component
stress: ii (diagonal) part is
                                -7.753477394392E-03
stress: component
                     1 of kinetic stress is
                                              -5.477053634248E-03
                     2 of kinetic stress is
                                              -5.272489903492E-03
stress: component
stress: component
                     1 of nonlocal ps stress is
                                                   2.396391029219E-03
                     2 of nonlocal ps stress is
                                                   1.907769135572E-03
stress: component
stress: component
                     1 of Ewald energ stress is
                                                   5.707853334522E-03
                                                  6.846039389167E-03
                     2 of Ewald energ stress is
stress: component
                                                   -1.789801472019E-03
stress: component
                     1 \text{ of}
                              core xc stress is
                     2 of
                                                   -1.911589314962E-03
stress: component
                              core xc stress is
```


Design of development process (continued)

- Second through fourth stage numerical derivatives of GS quantities
 - "Five-point" strain first derivatives of GS quantities (symmetric shear strains)
 - Strain increments small enough to keep complete {K} set invariant
 - Second derivatives of total energy (2DTE's) from numerical derivatives of 1DTE's (eg., stress)
 - *Extreme* convergence of self-consistency required, but not of k's or cutoffs
- Second stage *Sternheimer*
 - Convergence of self-consistency loop
 - Ensure variational part of RF 2DTE's decreases with convergence
 - First-order density $n^{(1)}$ validated by comparison with numerical $n^{(0)}$ derivatives
- Second stage validation of variational RF 2DTE's
 - Non-variational part $\langle 0 | H^{(2)} | 0 \rangle$ not yet available
 - Compute numerical 2DTE's as above with converged GS wave functions for strained lattices
 - Subtract numerical 2DTE's with strained lattices but unstrained ("frozen") GS wave functions
- So far, we are only dealing with "diagonal" 2DTE's

Design of development process (continued)

• Third stage $-\langle 0 | H^{(2)} | 0 \rangle$:

$$E_{\text{non-var}}^{(\lambda_1\lambda_2)} = \sum_{\alpha}^{\text{occ}} \left\langle \psi_{\alpha}^{(0)} \left| (T^{(\lambda_1\lambda_2)} + V_{ext}^{(\lambda_1\lambda_2)}) \right| \psi_{\alpha}^{(0)} \right\rangle + \frac{1}{2} \frac{\partial^2 E_{Hxc}}{\partial \lambda_1 \partial \lambda_2} \right|_{n^{(0)}}$$

- Validate term-by-term with "frozen wave function" numerical strain derivatives of stress components
- Diagonal and off-diagonal 2DTE's
- Numerical strain derivatives of forces for internal strain mixed 2DTE's
- Frozen wf strain derivatives of the electric polarization are zero, so there is no contribution to piezoelectric tensor from these terms
- Note that the numerical derivatives of stress σ need Ω factor for 2DTE comparison

$$\frac{\partial^2 E_{el}}{\partial \eta_{\alpha\beta} \partial \eta_{\gamma\delta}} = \frac{\partial}{\partial \eta_{\alpha\beta}} \left(\Omega \sigma_{\gamma\delta} \right)$$

Design of development process (continued)

• Fourth stage -
$$E_{\text{non-stat}}^{(\lambda_1 \lambda_2)} = \sum_{\alpha}^{\text{occ}} \left\langle \psi_{\alpha}^{(\lambda_2)} \left| (T^{(\lambda_1)} + V_{ext}^{(\lambda_1)} + H_{Hxc0}^{(\lambda_1)}) \right| \psi_{\alpha}^{(0)} \right\rangle$$

- Use strain-perturbation wave functions $\psi_{\alpha}^{(\lambda_2)}$
- $-\lambda_1$ is Cartesian strain or reduced atomic displacement
- Electric field is special case $-\frac{\partial^2 E_{el}}{\partial \tilde{\mathcal{E}}_j \partial \eta_{\alpha\beta}} = \frac{2\Omega}{(2\pi)^3} \int_{\mathrm{BZ}} \sum_{m}^{\mathrm{occ}} \left\langle i \psi_{\mathbf{k}m}^{(\tilde{k}_j)} \middle| \psi_{\mathbf{k}m}^{(\eta_{\alpha\beta})} \right\rangle d\mathbf{k}$
 - Field and d/dk first-order wave function in reduced coordinates
- Validate using numerical strain derivatives of GS stresses, forces, and polarization
 - Use converged strained wave functions
 - No subtractions since non-variational contributions are already validated
 - For polarization, numerical derivatives have to be corrected to give "proper" piezoelectric tensor (see Infos/theory/lr.pdf)
 - Need to use finite-difference *d/dk* wf's in RF calculation for accurate comparison

Non-self-

consistent

Subroutines for strain perturbation (53)

Modified routines

	K10	1'10	020	Utl
cart29.f				•
cgwf3.f	•			
chkinp.f				•
dyout3.f				•
eneres3.f	٠			
gath3.f				٠
insy3.f	•	•		
loper3.f	•	•		
mkcor3.f	•	•	•	
mkffkg3.f	•	•	•	
mkffkg.f	•	•	•	
mkffnl.f	•	•	•	
nonlop.f	•	•	•	
nstdy3.f		•		
opernl2.f	•	•	•	
opernl3.f	•	•	•	
opernl4a.f	•	•	•	
opernl4b.f	•	•	•	
prtene3.f	•			
prtxf.f				•
respfn.f	•	•	•	
scfcv3.f	•			
vtorho3.f	•			
vtowfk3.f	•			

contstr25.f

contstr26.f

New routines

	K10	1'10	020	Utl
d2kindstr2.f			٠	
eltfrhar3.f			٠	
eltfrkin3.f			•	
eltfrloc3.f			•	
eltfrnl3.f			•	
eltfrxc3.f			•	
ewald4.f			•	
hartrestr.f	•	٠		
kpgstr.f	•	٠		
metstr.f	•	•		
newfermie1.f	•			
nselt3.f		٠		
nstwf4.f		٠		
splfit2.f			•	
symkchk.f				•
vlocalstr.f	•	•		

K101'10020Utl $\langle \mathbf{K} | H^{(1)} | 0 \rangle$ $\langle \mathbf{1'} | H^{(1)} | 0 \rangle$ $\langle \mathbf{0} | H^{(2)} | 0 \rangle$ Utility

Mnemonics str - strain, eltfr - elastic tensor frozen istr - internal strain, cont - contraction

•

٠

Nonlocal pseudopotentials in Abinit¹

- Most mathematically complex object for strain derivatives
- Reduced wave vector matrix elements have the form

$$\langle \tilde{\mathbf{K}}' | V_{NL} | \tilde{\mathbf{K}} \rangle = \frac{1}{\Omega} \sum_{\kappa \ell} e^{2\pi i \tilde{\mathbf{K}}' \cdot \tilde{\mathbf{\tau}}_{\kappa}} f_{\kappa \ell} (\sum_{ij} \Upsilon_{ij} \tilde{K}'_{i} \tilde{K}'_{j}) \times$$

$$\langle \mathcal{D}_{\ell} (\sum_{ij} \Upsilon_{ij} \tilde{K}'_{i} \tilde{K}'_{j}, \sum_{ij} \Upsilon_{ij} \tilde{K}'_{i} \tilde{K}_{j}, \sum_{ij} \Upsilon_{ij} \tilde{K}_{i} \tilde{K}_{j}) e^{-2\pi i \tilde{\mathbf{K}} \cdot \tilde{\mathbf{\tau}}_{\kappa}} f_{\kappa \ell} (\sum_{ij} \Upsilon_{ij} \tilde{K}_{i} \tilde{K}_{j})$$

- ${\it D}_\ell$ modified Legendre polynomials, $f_{\kappa\ell}$ psp form factors, $\tilde{\tau}_\kappa$ reduced atom coordinates
- All arguments are dot products expressed with metric tensors
- Psp's act on wave functions (in opernl*.f) by summing wave function coefficients $c_{\alpha \tilde{K}}$ times a set of tensor products of reduced \tilde{K} components,

$$T_{\ell m}(\tilde{\mathbf{K}}) = \tilde{K}_{1}^{I_{T}(1,\ell,m)} \tilde{K}_{2}^{I_{T}(2,\ell,m)} \tilde{K}_{3}^{\ell-I_{T}(1,\ell,m)-I_{T}(2,\ell,m)}$$

- $I_T(i, \ell, m)$ are index arrays

 $-T_{\ell m}(\tilde{\mathbf{K}})$ (created in mkffkg.f) are analogous to spherical harmonics

(1) D. C. Allan (unpublished, ~ 1987)

Nonlocal pseudopotential strain derivatives

- *Mathematica* programs created to do symbolic differentiation and extract coefficients coupling pairs of "input" ($\tilde{\mathbf{K}}$) and "output" ($\tilde{\mathbf{K}}$) tensors
- Coefficients are polynomials in $\Upsilon_{ii}, \Upsilon_{ii}^{(\alpha\beta)}, \Upsilon_{ii}^{(\gamma\delta)}, \Upsilon_{ii}^{(\alpha\beta\gamma\delta)}$
- SED and C programs turn *Mathematica* results into useful Fortran 90
 - Example from contstr24.f

```
cm(6,10) = (gm(1,3)*2*(270*dgm01(2,3)*dgm10(1,1)+540*dgm01(1,3))
     *dgm10(1,2)+540*dgm01(1,2)*dgm10(1,3)+270*dgm01(1,1)*dgm10(2,3))&
&
     +gm(3,3)*(-108*gm(1,2)*(dgm01(1,3)*dgm10(1,1)+dgm01(1,1)*dgm10(1,3))\&
&
     +gm(1,1)*(-54*dgm01(2,3)*dgm10(1,1)-108*dgm01(1,3)*dgm10(1,2)&
&
     -108*dgm01(1,2)*dgm10(1,3)-54*dgm01(1,1)*dgm10(2,3)))+gm(2,3)&
&
     *(540*gm(1,3)*(dgm01(1,3)*dgm10(1,1)+dgm01(1,1)*dgm10(1,3))-54*gm(1,1)&
&
     *(dgm01(3,3)*dgm10(1,1)+dgm01(1,1)*dgm10(3,3))+270*gm(1,3)**2*d2gm(1,1)&
&
     +gm(3,3)*(-108*dgm01(1,1)*dgm10(1,1)-54*gm(1,1)*d2gm(1,1)))+180*gm(1,3)&
&
&
     **3*d2gm(1,2)+gm(1,3)*(-108*(gm(1,2)*(dgm01(3,3)*dgm10(1,1)+dgm01(1,1)&
     *dgm10(3,3))+gm(1,1)*(dgm01(3,3)*dgm10(1,2)+dgm01(1,2)*dgm10(3,3)))&
&
     +gm(3,3)*(-216*dgm01(1,2)*dgm10(1,1)-216*dgm01(1,1)*dgm10(1,2)&
&
     -108*gm(1,2)*d2gm(1,1)-108*gm(1,1)*d2gm(1,2)))/36.d0
&
```

- Here gm(i,j), dgm*(i,j), d2gm(i,j) are Υ_{ii} , etc.
- Many 1000's of lines of infrequently executed code in cont*str*.f and metstr.f
- Evaluation of cm's is not a major factor in execution time

Symmetry with the strain perturbation

- The reduced-zone k sample determined for (space group / strain) is used for $\langle \mathbf{K} | H^{(1)} | 0 \rangle$, *Sternheimer*, and $\langle \mathbf{1}' | H^{(1)} | 0 \rangle$
 - The full-zone sample specified in input data must have the full space group symmetry (enforced by test).
- Loop on (ipert1, idir1) for 1st-order wave functions restricted by input variables (rfstrs, rfdir) but not by symmetry
 - This could be improved, but would have limited impact on performance
- Inner loop on (ipert2, idir2) in $\langle 1' | H^{(1)} | 0 \rangle$ calculations is carried over all strain and atomic displacement terms
 - piezoelectric contribution is computed if d/dk wf's are available
- All $\langle 0 | H^{(2)} | 0 \rangle$ strain and internal-strain tensor elements are computed, using the full zone k sample
 - It is more efficient here to keep loops on strains and displacements inside routines like nonlop.f
 - The reduced zone for pairs of perturbations would seldom be reduced much anyway

XC non-linear core correction

- On the reduced real-space grid, electron charge depends only on ${f \Omega}^{-1}$
- Model core charge has a detailed dependence on Ξ_{ii}
 - Resulting analysis is rather complex
- Core charges must be *extremely smooth* functions to avoid significant convergence errors
 - Reason: Strain and atomic position derivatives of the xc self-interaction of a single core don't cancel point-by-point on the grid, but only in the integral
 - Inconsistencies in the treatment of the core charges and their derivatives in some src_2psp/psp*cc.f routines makes matters worse

Kinetic energy cutoff "smoothing"

- Existing Abinit strategy to smooth energy dependence on lattice parameters in GS calculations
- RF strain derivative calculations do accurately reproduce GS numerical derivatives with nonzero ecutsm
- Divergence can produce large shifts in elastic tensor if calculation is not very well converged with respect to ecut
 - Remember, we take two derivatives
 - Perhaps the cutoff function could be improved

Strain perturbation for metals

- Thermal smearing of the Fermi surface must be introduced for stability
- In RF calculations, a band of partially-occupied states around \mathcal{E}_F is treated by finite-temperature perturbation theory in the Sternheimer solution, and only the completely unoccupied states are found by the conjugate-gradient method ⁽¹⁾
- For strain, a first-order Fermi energy $\mathcal{E}_F^{(1)}$ must be introduced⁽²⁾
- $\mathcal{E}_{F}^{(1)}$ enters into the Sternheimer self-consistency process
- Convergence can be rather slow
 - Only simple mixing is presently used to iterate $\mathcal{E}_F^{(1)}$
 - Coupling to the first-order potential iteration through Anderson or CG mixing may help
- Is $\mathcal{E}_F^{(1)}$ needed for the $\mathbf{Q} = 0$ interatomic force constant calculations needed to get the relaxed-atom elastic tensor for metals?
 - (1) S. de Gironcoli, Phys. Rev. B 51, 6773 (1995)
 - (2) S. Baroni, S. de Gironcoli, and A. Dal Corso, Rev. Mod. Phys. 73, 515 (2001)

Input file for RF run with strain

```
# First dataset : Self-consistent run
# Second dataset : Non-self-consistent run
                  for full k point set
#
# Third dataset : d/dk response calculation
                  #this section is omitted if
getwfk3
                  #only the elastic tensor is
         2
getden3 1
                  #wanted
   iscf3 -3
rfelfd3 2
 rfdir3 111
# Fourth dataset : phonon, strain, and homogeneous
                  electric field response
#
diemix4 0.85
diemac4 1.0
 getwfk4
         2
getddk4 3
                  #omitted for ELT only
   iscf4 3
                  #omitted for ELT only
rfelfd4 3
rfatpol4
        12
 rfdir4 111
rfphon4
         1
                  #only this is new for strain
rfstrs4
         3
# Common data
                  #stresses and forces should
                  #(in general) be relaxed
   nqpt
         1
                  #beforehand
    qpt 0 0 0
```


2DTE terms in output file

- Mix of reduced and Cartesian coordinates, also in _DDB output file
 - With natom = 2, electric field pert = 4 and strain pert = 5, 6
 - Only a sample of the complete matrix shown

```
2nd-order matrix (non-cartesian coordinates, masses not included,
 asr not included )
cartesian coordinates for strain terms (1/ucvol factor
 for elastic tensor components not included)
   j1
            j2
                          matrix element
dir pert dir pert
                     real part
                                  imaginary part
 1
          2
                  -2.8200006186
      1
              2
                                  0.000000000
                  -2.8654826400
 1
      1
        3
              2
                                  interatomic force constant (red-red)
              4 -4.1367712586
                                  Born effective charge (red-red)
 1
      1 1
 1
      1
          2
              5 -0.0238530938
                                  internal strain (red-cart)
 1
      4 3
              4 46.0269881204
                                  dielectric tensor (red-red)
              5 -0.2214090328
      4 3
                                  piezoelectric tensor (red-cart)
 1
 1
      5
          2
              6 -0.0103809572
                                  elastic tensor (cart-cart)
```

- Cartesian ELT, PZT, and internal strain are also included in the output
- Detailed breakdown of contributions is given for prtvol = 10

Incorporating atomic relaxation

- Implemented as post-processing procedure in anaddb
 - New and modified routines: dielmore9.f, elast9.f, piezo9.f, instr9.f, invars9.f, outvars9.f, diel9.f, anaddb.f, defs_common.f, defs_basis.f
- Full theoretical discussion in Infos/Theory/lr.pdf
- Basic results:

$$\tilde{C}_{\alpha\beta,\gamma\delta} = C_{\alpha\beta,\gamma\delta} + \Omega^{-1} \sum_{mn=1}^{natom} \sum_{ij=1}^{3} \Lambda_{mi,\alpha\beta} (K^{-1})_{mi,nj} \Lambda_{nj,\gamma\delta}$$
$$\tilde{e}_{\alpha\beta,\gamma} = e_{\alpha\beta,\gamma} + \Omega^{-1} \sum_{mn=1}^{natom} \sum_{ij=1}^{3} \Lambda_{mi,\alpha\beta} (K^{-1})_{mi,nj} Z_{nj,\gamma}$$

- \tilde{C}, C physical and clamped-atom elastic tensors
- $-\tilde{e}, e$ physical and clamped-atom piezoelectric tensors
- K^{-1} pseudo-inverse Q=0 interatomic force constant matrix
- Λ internal-strain "force response" tensor
- Z Born effective charge matrix
- All in Cartesian coordinates

Input file for anaddb run

```
dieflag
         3 !flag for relaxed-ion dielectric tensor
 elaflag 3 !flag for the elastic tensor
piezoflag 3 !flag for the piezoelectric rensor
instrflag 1 !flag for the internal strain tensor
!the effective charge part
         1
     asr
   chneut 1
!Wavevector list number 1
   nph1l 1
   qph11 0.0 0.0 0.0 1.0
!Wave vector list no. 2
   nph21
          1
    qph21 0.0 0.0 1.0 0.0
```

New flags and/or values in violet

New output from anaddb

Elast	ic Tensor(re	laxed ion)(U	nit:10^2GP,V	OIGT notatio	n):	
1.2499151 0.6699976 0.6835944 0.0022847 -0.0113983 -0.0001512	0.6699976 1.6217899 0.5566207 0.0194005 -0.0055653 -0.0055915	0.6835944 0.5566207 1.5896839 -0.0207927 0.0107924 0.0080825	0.0022847 0.0194005 -0.0207927 0.6659339 0.0077398 -0.0056845	-0.0113983 -0.0055653 0.0107924 0.0077398 0.7283916 0.0014049	-0.0001512 -0.0055915 0.0080825 -0.0056845 0.0014049 0.7222881	
proper piezoelectric constants(relaxed ion)(Unit:c/m^2)						
	0.01714 0.00828 0.01882 -0.03872	694 0.0 454 0.0 065 0.0 154 -0.0	5107080 3716812 5180658 1245206	-0.00883676 -0.00810176 -0.00576393 0.01902693		
	-0.01424 0.01566	058 0.0 436 -0.0	0757132 0054740	-0.00294782 0.00218470		

- Also in output
 - Clamped-ion versions of the above in standard units
 - Clamped and relaxed compliance tensors
 - "Force-response" and "displacement response" internal strain tensors
 - More tensors corresponding to different boundary conditions to be added

Global comparison with numerical derivatives

- Zinc-blende AIP with random distortions so all tensor elements are non-zero.
 - Ground state calculations of stress and polarization with *exquisitely* relaxed atomic coordinates (but unrelaxed stress)
 - Finite-difference $d/dk \psi_{\alpha}^{(1)}$'s for best consistency with polarization calculations
 - Sample of complete set of tensor elements

		Numerical	DFPT	Diff
ΧХ	ΧХ	124.991500	124.991500	-1.1E-05
уу	ΧХ	66.999750	66.999760	8.2E-06
ZZ	ΧХ	68.359440	68.359440	7.0E-07
yz	хх	0.228447	0.228466	1.9E-05
ΧZ	ΧХ	-1.139838	-1.139828	9.6E-06
ху	ΧХ	-0.015028	-0.015117	-9.0E-05
ΧХ	yz	0.228471	0.228466	-4.4E-06
уу	yz	1.940050	1.940054	3.7E-06
ΖZ	yz	-2.079264	-2.079275	-1.1E-05
yz	yz	66.593340	66.593390	5.2E-05
ΧZ	yz	0.773972	0.773977	5.1E-06
ху	yz	-0.568446	-0.568449	-3.2E-06

Elastic Tensor (GPa)

Piezoelectric Tensor	(C/m ² x 10 ⁻²)
----------------------	--------------------------------------	---

		Numerical	DFPT	Diff
х	ΧХ	1.714769	1.714694	-7.5E-05
у	ΧХ	5.107069	5.107080	1.1E-05
z	ΧХ	-0.883962	-0.883676	2.9E-04
Х	уу	0.828569	0.828454	-1.2E-04
у	уу	3.716843	3.716812	-3.2E-05
z	уу	-0.810201	-0.810176	2.5E-05
Х	yz	-3.871980	-3.872154	-1.7E-04
у	yz	-1.245173	-1.245206	-3.3E-05
Z	yz	1.902687	1.902693	5.6E-06

- RMS Errors 4.0X10⁻⁵, ELT and 1.7X10⁻⁶, PZT
 - One-two orders of magnitude smaller errors for clamped-atom quantities.

Present status, future development

- Examples of strain RF and anaddb calculations are Test_v4/t61-70
- RF strain is fully parallelized
 - Parallel version was developed simultaneously with sequential
- Present limitations
 - Norm-conserving psp's
 - Non-spin polarized (this is about to be relaxed, testing is nearly complete)
 - LDA only
 - No spin-orbit
- GGA prospects
 - Probably straightforward but complicated by "two kinds of charge" problem with model cores
 - Model core smoothness problem is undoubtedly worse
- Spin-orbit coupling
 - This has all the nonlocal psp complexity, probably significantly worse judging by the existing spin-orbit code for stress
 - Mathematica code will eventually be added to the documentation and may help a future developer with this

Future development, continued

- PAW
 - Far beyond norm-conserving psp non-local complexity
 - Needs spherical harmonics with off-diagonal coupling which cannot be turned into dot products with simple metric-tensor dependencies
 - Has "two kinds of charge" problem like model core but much worse, because augmentation charge has non-spherical components

On the upbeat side, however

- 3rd-order response functions involving strain via "2n+1" theorem
 - Require two $\psi^{(1)}$ and one $H^{(1)}$, all available
 - Eg., electrostriction, non-linear elastic constants, Grüneisen parameters
- It's time for feedback let's see what the users want and what trouble they get into
 - If a user wants a strain feature badly enough we'll have a new developer !
 - Isn't that the ABINIT philosophy?

Appendix : Mathematica for nonlocal psp

$$\langle \mathbf{K'} | V_{NL} | \mathbf{K} \rangle = \frac{1}{\Omega} \sum_{\kappa \ell m} e^{i\mathbf{K'} \cdot \mathbf{\tau}_{\kappa}} f_{\kappa \ell} (\mathbf{K'} \cdot \mathbf{K'}) \mathcal{O}_{\ell} (\mathbf{K'} \cdot \mathbf{K'}, \mathbf{K'} \cdot \mathbf{K}, \mathbf{K} \cdot \mathbf{K}) e^{-i\mathbf{K} \cdot \mathbf{\tau}_{\kappa}} f_{\kappa \ell} (\mathbf{K} \cdot \mathbf{K}).$$

- Define tensor products $T_{\ell_m}(ilde{\mathbf{K}})$ and $T_{\ell_m}(ilde{\mathbf{K}}')$
 - Follows D. C. Allan

$tnk = { {1}, (*)$	0,	1 *)
{k1, (* k2, (* k3}, (*	1, 1, 1,	1 * 2 * 3 *)))
<pre>{k1 k1, k2 k2, k3 k3, k3 k2, etc. t</pre>	(* (* (* (*	2, 2 2, 2 2, 2 2, 2	1 *) 2 *) 3 *) 4 *) 7

- Define *K*'s, metric tensor functions, dot products, and Legengre's
- s1 and s2 are strain variables

```
k = {k1, k2, k3}; kp = {kp1, kp2, kp3};
m = {{m11[s1,s2], m12[s1,s2], m13[s1,s2]},
{m12[s1,s2], m22[s1,s2], m23[s1,s2]},
{m13[s1,s2], m23[s1,s2], m33[s1,s2]};
dt = kp.m.k; ks = k.m.k; kps = kp.m.kp;
Plegendre={1, dt, 1.5 dt^2 - 0.5 kps ks,
2.5 dt^3 - 1.5 kps dt ks};
```


Mathematica for nonlocal psp, continued

- Strain derivatives of form factors f_{ℓ} "bring out" derivatives of dot products
- Define 6 combinations of dot product derivatives and Legendre derivatives that have given offsets between "input" and "output" rank

<pre>poly = {D[kps,s2] D[kps,s1] Plegendre[[rank+1]],</pre>	$\ell \rightarrow \ell + 4$	f_ℓ, f_ℓ''
<pre>D[ks, s2] D[ks, s1] Plegendre[[rank+1]],</pre>	$\ell + 4 \rightarrow \ell$	f_ℓ'', f_ℓ
(D[D[kps,s2],s1] Plegendre[[rank+1]]		
+ D[kps,s1] D[Plegendre[[rank+1]],s2]		
+ D[kps,s2] D[Plegendre[[rank+1]],s1]),	$\ell \rightarrow \ell + 2$	f_ℓ, f_ℓ'
<pre>(D[D[ks, s2],s1] Plegendre[[rank+1]]</pre>		
+ D[ks, s1] D[Plegendre[[rank+1]],s2]		
+ D[ks, s2] D[Plegendre[[rank+1]],s1]),	$\ell + 2 \rightarrow \ell$	f'_{ℓ}, f_{ℓ}
(D[kps,s1] D[ks,s2] + D[kps,s2] D[ks,s1])		
<pre>Plegendre[[rank+1]],</pre>	$\ell + 2 \rightarrow \ell + 2$	f'_{ℓ}, f'_{ℓ}
D[D[Plegendre[[rank+1]],s2],s1];	$\ell \rightarrow \ell$	f_{ℓ}, f_{ℓ}

- In *Mathematica* df/dx is p[f,x]
- Now, do the work extract the coefficients of each pair of input and output tensors

```
Do[term = Simplify[Coefficient[poly[[iterm]], (tnkp[[rankout+1]][[jj]] *
    tnk[[rankin+1]][[ii]])]];
```


