ABINIT04 workshop (10-12 May, 2004, Paris)

ABINIT applications : Rare-earth Sesquioxides/Oxysulfides and a Photochromic Molecular Crystals

Mitsubishi Chemical Group

Science and Technology Research Center, Inc.

Masayoshi Mikami and Shinichiro Nakamura

Contents: 1. RE₂O₃/RE₂O₂S 1.1. Why RE₂O₃/RE₂O₂S? 1.2. ABINIT results : Geometry, Band, RF-calculations... 2. A Molecular Crystal : RF-results and discussion (for detail, Mikami & Nakamura, PRB69, 134205 (2004))

Motivation

Feasibility of first-principles calculation for extraordinary systems ?

<u>1. Introduction (Why Oxysulfide ?)</u>

Rare-earth Oxysulfides (RE_2O_2S : RE=Y, La - Lu)

similarity/difference between RE₂O₃ and RE₂O₂S?

Variation of the band gap in RE₂O₃ / Body-color in RE₂O₂S

2. Calculation Method

First-Principles Band Calculation : **ABINIT code** (www.abinit.org) Reference: X. Gonze et al., Comp. Mater. Sci. 25, 478 (2002) (see also :M.Mikami "Kotai-Butsuri" p.219 (2003) for Japanese)

Troullier-Martins-type pseudopotentials, prepared with **FHI98PP code FHI98PP** : www.fhi-berlin.mpg.de/th/fhi98md/fhi98PP M. Fuchs and M. Scheffler, Comp. Phys. Comm. 119, 67 (1999) **RE PP:** 4*f* as "core", shallow-core (5s/5p) as "valence" ([Kr]4d¹⁰4*f* x 5s²5p⁶5d¹6s², x=0,1,2 for La,Ce,Pr, respectively) to avoid difficulties (ghost-bands, 4*f*-states at E_F & fractional occ.) => *Feasiblity check !* (geometries, energy bands except *f*-state, ...) We will see if our "*cats*" are effective ... (from a Chinese saying)

Energy cut-off: 160Ry (due to RE's shallow-core states)

1st BZ integral : Monkhorst-Pack grid (4x4x2)

SCF sycle : Conjugate Gradient based on the minimum of the energy X. Gonze, Phys. Rev. B54, 4383 (1996)

Geomerty optimization : Broyden-Fletcher-Goldfarb-Shanno minimization

Typical examples from La_2O_2S calc.

=> V₀, Bulk Modulus: B

<u>3. Structures</u> calc. (expt.) This work & Previous work (PRB57,8939)								
	<i>a</i> (Å)	c (Å)	c/a	u	v	B (GPa)		
I O	3.933	6.086	1.547	0.247	0.645	118		
La_2O_3	(3.940)	(6.130)	(1.556)	(0.245)	(0.645)			
C_{α}	3.871	6.001	1.550	0.247	0.645	124		
Ce_2O_3	(3.888)	(6.026)	(1.550)	(0.245)	(0.647)			
	3.824	5.934	1.552	0.247	0.645	130		
Pr_2O_3	(3.859)	(6.013)	(1.558)	(0.246)	(0.656)			
	4.035	6.915	1.714	0.279	0.629	109		
La_2O_2S	(4.049)	(6.939)	(1.714)	(0.279)	(0.629)			
	3.976	6.822	1.716	0.280	0.629	114		
Ce_2O_2S	(4.008)	(6.886)	(1.718)					
	3.930	6.752	1.718	0.281	0.629	119		
Pr_2O_2S	(3.976)	(6.831)	(1.718)					
VOS	3.750	6.525	1.740	0.282	0.631	142		
Y_2O_2S	(3.791)	(6.596)	(1.740)					

NB: ionic radii(Å): La (1.10), Ce (1.07), Pr (0.99-1.126), Y (0.96)

Bond length : calc. (sum of ionic radii (Σ))

	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃
	2.364,2.422	2.327,2.388	2.299,2.362
KE-OI	(2.50)	(2.47)	(2.46)
	2.723	2.682	2.650
KE-O2	(2.50)	(2.47)	(2.46)
01 02	3.134	3.088	3.052
01-02	(2.80)	(2.80)	(2.80)

 $RE-O1 < \Sigma, RE-O2 > \Sigma$

	La ₂ O ₂ S	Ce ₂ O ₂ S	Pr ₂ O ₂ S
	2.415,2.420	2.378,2.381	2.349,2.350
KE-U	(2.50)	(2.47)	(2.46)
	3.025	2.986	2.958
KE-S	(2.94)	(2.91)	(2.90)
	3.465	3.417	3.380
0–5	(3.24)	(3.24)	(3.24)

Band structures calculated with FLAPW (WIEN2k)

RE₂**O**₂**S** Density of States (without f-states)

$$Ce_2O_3$$

 Pr_2O_3

RE₂O₃ Density of States (without f-states)

	<i>Lattice vibrations of RE_2O_2S</i> unit: cm ⁻¹								
	La ₂	O_2S	Ce ₂	O ₂ S	Pr_2O_2S				
	Theory	Expt.	Theory	Expt.	Theory	Expt.			
Raman									
E_{g}	107	104	109	106	111	101			
A_{1g}	201	196	203	_	205	190			
E_{g}	383	360	394	_	404	372			
A_{1g}	398	392	410	409	421	412			
IR									
${m F}$	193(TO)	262	197(TO)	248	200(TO)				
L_{u}	223(LO)	276	228(LO)	282	231(LO)				
Δ	201(TO)	212	237(TO)	200	241(TO)				
²¹ 2u	297(LO)		303(LO)	200	308(LO)	_			
F	333(TO)	420	342(TO)	417	349(TO)	_			
Ľu	474(LO)	458	483(LO)	450sh	491(LO)				
4	406(TO)	370	415(TO)	348	423(TO)				
²¹ 2u	513(LO)	570	524(LO)	JTU	533(LO)				

	L	un	it: cm ⁻¹				
	La ₂	$_{2}O_{3}$	Ce	$_{2}O_{3}$	Pr_2O_3		
	Theory	Expt.	Theory	Expt.	Theory	Expt.	
Raman							
E_{g}	106	74	108	_	110	_	
A_{1g}	201	108	203	_	205	_	
E_{g}	430	444	445	_	457	_	
A_{1g}	403	408	416	_	428		
IR							
${m F}$	191(TO)	242	198(TO)		203(TO)		
$L_{\rm u}$	299(LO)	242	308(LO)		316(LO)	—	
Δ	216(TO)	242	227(TO)	_	228(TO)	_	
212u	397(LO)		408(LO)		417(LO)		
F	397(TO)	435	409(TO)		418(TO)		
L _u	556(LO)	733	569(LO)		580(LO)		
A -	440(TO)	386	451(TO)	_	460(TO)		
212u	512(LO)	500	523(LO)		539(LO)		

	$Z^*_{\alpha \alpha}$ (La)	$Z^*_{\alpha \alpha}(O)$	$Z^*_{\alpha \alpha}(S)$	ε [∞] αα	ε ⁰ αα
xx, yy	+3.95	-2.78	-2.33	5.45 (4.53)	14.72
ZZ	+3.99	-2.79	-2.40	5.23 (4.40)	13.80

Born effective charge, high-frequency/static dielectric tensor of La₂O₂S

Born effective charge, high-frequency/static dielectric tensor of Y_2O_2S

	$Z^*_{\alpha \alpha}$ (La)	$Z^*_{\alpha \alpha}(O)$	$Z^*_{\alpha \alpha}(S)$	ε∞αα	ε ⁰ αα
xx, yy	+3.66	-2.53	-2.28	5.23 (4.29)	12.51
ZZ	+3.71	-2.63	-2.16	4.87 (4.07)	12.20

	$Z^*_{\alpha \alpha}$ (La)	$Z^*_{\alpha \alpha}(O)$	$Z^*_{\alpha \alpha}(S)$	ε [∞] αα	ε ⁰ αα
xx, yy	+3.95	-2.78	-2.34	5.45 (4.53~4.7)	14.72
ZZ	+3.99	-2.79	-2.40	5.23 (4.40~4.7)	13.80

Born effective charge, high-frequency/static dielectric tensor of La_2O_2S

Born effective charge, high-frequency/static dielectric tensor of La_2O_3

	$Z^*_{\alpha \alpha}(La)$	$Z^*_{\alpha \alpha}(O_1)$	$Z^*_{\alpha \alpha}(O_2)$	ε [∞] αα	ε ⁰ αα
xx, yy	+4.09	-2.74	-2.71	4.83 (4.13 ~ 4)	23.20~20
ZZ	+3.78	-2.49	-2.57	4.69 (4.02 ~ 4)	21.54~20

Band	$Z_{xx}^{*}(La)$	Z _{zz} *(La)	$Z_{xx}^{*}(O)$	$Z_{zz}^{*}(O)$	$Z_{xx}^{*}(S)$	$Z_{zz}^{*}(S)$	
Z_{κ}	+11.00	+11.00	+6.00	+6.00	+6.00	+6.00	
La 5s	-2-0.06	-2-0.06	0+0.05	0+0.05	0+0.01	0+0.00	
O 2s	0+2.15	0+0.84	-2-2.23	-2-0.20	0+0.06	0-1.28	
La 5p	-6-2.48	-6-1.19	0+2.23	0+0.08	0+0.56	0+2.23	roughly compensated
S 3s	0+0.23	0+0.29	0+0.09	0+0.22	-2-0.63	-2-1.02	
O 2p S 3p	0+1.08	0+1.14	-6-0.95	-6-0.92	-6-0.36	-6-0.30	
Total	+3.95	+3.99	-2.78	-2.79	-2.34	-2.40	

Band-by-band decomposition of Z^* in La_2O_2S

Band-by-band decomposition of Z^* in La_2O_3

Band	$Z_{xx}^{*}(La)$	Z _{zz} *(La)	$Z_{xx}^{*}(O_1)$	$Z_{zz}^{*}(O_1)$	$Z_{xx}^{*}(O_2)$	$Z_{zz}^{*}(O_2)$	
Z_{κ}	+11.00	+11.00	+6.00	+6.00	+6.00	+6.00	
La 5s	-2-0.07	-2-0.05	0+0.07	0+0.05	0-0.01	0-0.01	
O 2s	0+4.67	0+2.66	-2-2.99	-2-1.72	-2-3.57	-2-1.64	roughly
La 5p	-6-4.76	-6-2.73	0+3.12	0+1.83	0+3.50	0+1.57	compensated
O 2p	0+1.25	0+0.91	-6-0.95	-6-0.62	-6-0.62	-6-0.47	
Total	+4.09	+3.78	-2.74	-2.49	-2.71	-2.57	

A reasoning about the E_g variation in RE_2O_3

PHYSICAL REVIEW B 64 085107

FIG. 6. Systematic behavior of 4f binding energies relative to the valence band maximum. Circles represent our measured binding energies relative to the VBM (at 8.7 eV); negative binding energies are within the band gap of the host and positive energies are below the VBM. The dotted line is the fit of the empirical model to our measured values without considering the effect of ionic radius. The solid line is the fit of the model to our measured values including the effect of ionic radius. The error bars on the model are due to uncertainty in the values of the free-ion ionization potentials and the error bars on the extrapolated values for Eu³⁺ through Ce³⁺ include the uncertainty due to the accuracy of the fitting parameters. The triangles represent estimated positions from excited-state absorption and photoconductivity measurements in Refs. 4, 5, and 20. The diamond is the estimated position in EuGG from Ref. 52. Note that the bottom of the conduction band lies at about -6.5 eV.

FIG. 2. Energy diagram of Er^{3+} and Ce^{3+} relative to the band gap of Y_2O_3 (only relevant levels are drawn).

"Locating lanthanide impurity levels in the forbidden band" by Pieter Dorenbos (J. Lumin., in press)

Empirical scheme based on his database (4f-5d/CTS) predicts :

Fig. 5. Energy-level schemes of divalent and trivalent lanthanides in YPO₄.

Important for design of trap level/absorption ...

Fig. 1. Idealized systematic in the energy-level positions of divalent lanthanides in a wide band gap ionic crystal.

P. Dorenbos, J. Lumin (in press)

<u>2. Summary for the 1st part of my talk</u>

- Geometries well-reproduced with PPs (within ~1 % in lattice const.) smaller RE ... smaller a & c ... larger Bulk modulus(B) $B(RE_2O_3) > B(RE_2O_2S)$
- *Indirect* bandstructure of RE₂O₃/RE₂O₂S (NB: without *f*-states)

 RE_2O_2S bandstructure ~ Y_2O_2S bandstructure bottom of CB : K ... due to the similar geometries smaller RE ... wider VB width ... larger covalency

ionic				covalent
La	Ce	Pr	Y	
large				small

similar band gap between VB and CB(RE-d) among RE₂O₃ (RE₂O₂S) but different E_g (from absorption/body-color) $\rightarrow \Delta f \rightarrow 5 d/CTS$ transition (from L¢ reason diagram)

→ $4f \rightarrow 5d/CTS$ transition (from J ϕ rgensen diagram) $4f^{1}(Ce)/4f^{2}(Pr)$ may lie between VB and CB(RE-d)

• Response function calculation for phonon/ ε seems satisfactory ...

The transferable RE-PPs may be applied to other "simple" RE-compounds for GS/RF calc.

(Mikami & Nakamura, submitted to RE'04)

(possible) Future works awaited ...

• explicit treatment of *f*-state for optical transitions (e.g. LSDA+U ?)

• application of other ABINIT functions:

Comparison with PAW calculations (accuracy & speed ...)

Charge analysis (Bader)

Other RF calculations (stress, non-linear optical properties, ...)

2nd part of my talk taken from ...

Seminar@UCL (May 7, 2004)

First-principles study of Photochromic Molecular Crystals

Mitsubishi Chemical Group

Science and Technology Research Center, Inc.

Masayoshi Mikami, Takao Kobayashi, Shinichiro Nakamura

- 1. Background
- 2. Computational Method
- 3. Result: *Salicylideneaniline* -> structures, energetics, dielectric

Diarylethene-> structures, energetics, photo-absorption

4. Summary

(Prof. M. Irie)

(Prof. M. Irie)

Industrial background : Functional Dyes

Background

More potential in photochromic systems for devices

M.Irie., Chem.Rev.100,1685 (2000)

UV light writing in *Diarylethene crystals*

図3 結晶に書き込んだ「光」という文字

From Prof. Irie laboratory Home Page (http://www.cstf.kyushu-u.ac.jp/irie/irie.html)

Motivation

From Molecular Design (Ab-initio MO method) to **Band Engineering** (First-Principles Study).

NB: Extraordinary stability of the trans-keto form in solid state (400 times longer life than other ketos unsubsitituted with NO₂)

J. Harada et al. *JACS (1999)* <u>121</u> 5809
T. Kawato et al. *J.Photochem (1985)* <u>28</u>, 103

J. Harada et al. JACS (1999) <u>121</u> 5809

Calculation Method

Density Functional Theory – Generalized Gradient Approximation : Perdew-Burke-Ernzerhof (PBE)-type functional : Phys. Rev. Lett. 77, 3865 (1996), ibid 80, 891 (1998)

Density Functional Perturbation Theory (for dielectric permittivity tensor)

First-Principles Band Calculation : **ABINIT code** (www.abinit.org) Reference: X. Gonze et al., Comp. Mater. Sci. 25, 478 (2002)

Troullier-Martins-type **pseudopotentials**, prepared with **FHI98PP code FHI98PP** : www.fhi-berlin.mpg.de/th/fhi98md/fhi98PP M. Fuchs and M. Scheffler, Comp. Phys. Comm. 119, 67 (1999)

Energy cut-off: 60Ry(salicylideneaniline)、70Ry(diarylethene) k-point sampling: Γ-point

SCF sycle : Conjugate Gradient based on the minimum of the energy X. Gonze, Phys. Rev. B54, 4383 (1996)

Geometry optimization : Broyden-Fletcher-Goldfarb-Shanno minimization Convergence ≤ 1 kcal/mol should be expected for energetics

Geometry Optimization

Superposed draw of X-ray structure and optimized structure

Our work on photochromic Salicylideneaniline molecular crystals

J. Harada et al. JACS (1999) <u>121</u> 5809 NB: extraordinary life-time of this trans-keto form in crystalline phase (life depends on with/without $-NO_2$)

M. Mikami & S. Nakamura, PRB69, 134205 (2004)

The effect of "packing" can explain the energetics ? YES !

Intermolecular hydrogen bonds are strengthened in the Keto-form. M. Mikami & S. Nakamura PRB69, 134205 (2004)

Evaluation of optical dielectric permittivity tensors

Density Functional Perturbation Theory (owing to ABINIT code)

Enol-type			Keto-type				
(2.710	0.048	-0.541		(2.889	-0.056	-0.671	
0.048	2.690	0.165		-0.056	2.801	0.323	
-0.541	0.165	2.819		-0.671	0.323	2.985)	
Eigenvalue	2.179, 2.719, 3.321			Eigenvalue	2.204, 2.774, 3.696		
Mean value	2.740 (n=1.655)			Mean value	2.892 (n=1.701)		

Refractive index change under photoirradiation ($\Delta n \sim 0.046$)

NB:Photonic memory using the change of refractive indices in a photochromic system (e.g. T.Fukaminato, S.Kobatake, T.Kawai, M.Irie, Proc.Japan.Acad.77(B), 30 (2002))

M. Mikami & S. Nakamura, PRB69, 134205 (2004)

2. Summary for the 2nd part of my talk

Salicylideneaniline molecular crystals :

- energetics \rightarrow analysis/evaluation of intermolecular H-bonds
 - \rightarrow understanding stability of trans-keto in crystalline state
- evaluation of $\varepsilon / n \rightarrow$ powerful design tool for photomemory

Lessons gained:

- k-point sampling may not affect for RF-calculation if a system has a *low-symmetry & large unit-cell*.
 NB: C₆₀ fcc solid: optical dielectric permittivity 5.64 for k=(0,0,0), 4.72 for k=(1/2,1/2,1/2), *c.f.* expt. 4.4
- VERY SLOW convergence in geometry optimization if an initial geometry is far from an equilibrium geometry. *other geometry optimizers* ? and/or *initial* <u>WF</u>/DEN ?

Thank you for your attention !

Thank you again for ABINIT !

Our publications owing to ABINIT:

TiO₂-anatase : Jpn.J.Appl.Phys., PRB Y_2O_2S : PRB, J.Lumin. RE_2O_3/RE_2O_2S : submitted to RE'04 (J.Alloy Compd.) Salicylideneaniline : PRB