Ab Initio Phase Diagrams of **Minerals**

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Artem R. Oganov

Laboratory of Crystallography, ETH Zurich, Zurich CH-8092, Switzerland.

E-mail: a.oganov@mat.ethz.ch Web-page: http://olivine.ethz.ch/~artem

Theoretical Mineral Physics Group at ETH Zurich...

Artem	Daniel	Donat
R.	Υ.	Adams
Oganov	Jung	
- 0		

Acknowledgements:

- Collaborators: <u>S.Ono</u>, M.Gillan, D.Price, ABINIT group, VASP group, ...
- Supercomputers: CSCS (Manno), CSAR (Manchester), own.
- Synchrotron: SPring8 (Japan).
- ETH Zurich: funding.

Plan:

Introduction

Simulation Methods

Results

MgO

SiO₂

MgSiO₃ perovskite and post-perovskite

Conclusions

Appendices

1. Introduction

Earth's Interior

Phase Diagrams and Deep Earth

Phase relations in mantle (after Ringwood, 1991)

Mantle convection: 670 km boundary is a partial barrier (thanks to P.Tackley)

Seismic discontinuities. Geochemistry. Geodynamics.

Which Diagrams Needed?

- Mantle: $MgO-SiO_2$ -CaO-Al₂O₃-FeO-Fe₂O₃.
- p,T,x-phase diagrams, ideally.

Here: pure MgO, SiO₂, MgSiO₃.

2. Simulation Methods

Density-Functional Perturbation Theory

- Quasiharmonic approximation.
- Phonon frequencies $\omega_i(\mathbf{k})$ and density of states $g(\omega)$.
- Thermodynamic properties, e.g.:

$$F(T) = E_0 + \int_{0}^{\omega_{\text{max}}} \frac{1}{2} \hbar \omega g(\omega) d\omega + k_{\text{B}} T \int_{0}^{\omega_{\text{max}}} \ln[1 - \exp(-\frac{\hbar \omega}{k_{\text{B}}T})]g(\omega) d\omega$$

- G=F+(-dF/dV)V.
- ABINIT code.

Phonon dispersion curves and phonon density of states of MgO: 0 GPa, 400 GPa, 600 GPa. (Oganov et al., J.Chem.Phys. 118, 10174 (2003))

3. Results

Story 1: MgO B1 vs B2 (not Vitamins!)

- B1 structure type NaCl.
- B2 structure type CsCl.
- Unique stability of the B1 structure!
- Ideal as a pressure calibrant.

Phase diagram of MgO

Oganov et al., J.Chem.Phys. 118, 10174 (2003)

Only B1 phase in the Earth.

Story 2: Phase diagram of SiO₂

Oganov et al., Submitted to PRL (2004)

 No seismic discontinuities from SiO₂ transitions.

 Breakdown of close packing at >200 GPa!

Breakdown of Close Packing

From Oganov et al., submitted to PRL (2004).

Seeing Atoms and Bonds

•Aspherical atoms.

•No O-O bonds, despite (3,-1) critical points.

•Si charge: +3.17 (Bader), +4.02 (Born).

Localised Orbital Locator

Schmider & Becke (2000,2002).Own implementation in VASP.

Story 3: MgSiO₃ perovskite

Perovskite crystals (CaTiO₃)

(Mg,Fe)SiO₃ perovskite ~40
 vol.% of the Earth.

Three issues:

- Symmetry of perovskite
- Decomposition of perovskite
- Post-perovskite phase

1. Symmetry

- Ideal structure cubic (Pm3m).
- MgSiO₃ perovskite at ambient conditions Pbnm.
- Higher symmetry at high P-T?

MgSiO₃ perovskite at 88 GPa and 3500 K

MgSiO₃: decomposition

Enthalpy of decomposition of MgSiO₃ perovskite. Oganov et al., In prep. (2004)

- Decomposition at high-P-T?
- Theory: NO!
- ∆S=-5 Jmol⁻¹K⁻¹ (100 GPa, 3000 K).

MgSiO₃: Post-perovskite phase

- S.Ono (2004): proposed that MgSiO₃ could adopt Fe₂O₃-III structure.
- Post-perovskite phase
 ~75 vol.% of D" layer!
- Experimentally confirmed by Oganov & Ono (2004) and Murakami et al. (2004).

Structure of post-perovskite phase of $MgSiO_3$. (Oganov & Ono, subm. to Nature, 2004).

Elastic Constants of Postperovskite

Table 3. Elastic constants of perovskite and post-perovskite at 120 GPa*.

	C_{ll}	C_{22}	C_{33}	C_{12}	C_{13}	C_{23}	C_{44}	C 55	C_{66}	K	G
Perovskite	907	1157	1104	513	406	431	364	271	333	648.0	310.9
	Acoustic velocities: $v_p = 14118$, $v_s = 7636$, $v_{\phi} = 11026$ m/s										
Post- perovskite	1252	929	1233	414	325	478	277	266	408	647.2	327.5
	Acoustic velocities: v_p =14158, v_s =7783, v_{ϕ} =10940 m/s										

*GGA results. All elastic constants are in GPa.

- VASP: PAW-GGA calculations using stress-strain relations.
- Similar to ABINIT result using D.R. Hamann's method (when stress state is taken into account).
- Explain most of the D" mysteries!

MgSiO₃: Post-perovskite phase

Theoretical and experimental phase diagram of MgSiO₃.

Summary

Further Work and Challenges

- Structure prediction Genetic Algorithms?
- Solid solutions (Monte Carlo?).
- Strongly correlated systems (Mg,Fe)O etc.

Appendix I. Accuracy.

- MgO, 1 atm, 300 K:
- Cv=36.58/36.87 theory/exp.
- S =26.81/27.13
- Stishovite (SiO₂), 1 atm, 300 K:
- Cv=41.3/42.2 theory/exp.
- S = 24.6/25.9

Appendix II. MD & visualisation

- 120-atom cell.
- PAW, GGA.
- VASP.
- Movie STM3 (thanks to M.Valle & J.Favre)
- Compatible with CPMD, VASP and DL_POLY formats.
- ABINIT

Appendix III. Elasticity under pressure

• Non-uniqueness of the definition (strain type, differentiation details) when pressure (*P*) is present.

Most useful definition of elastic constants:

$$\sigma_{ij} = C_{ijkl} \eta_{kl} , \qquad \{1\}$$

Usual definition of strain:
$$a_{ij}' = (\delta_{ij} + \eta_{ij}) a_{ij}^0$$
 {2}

$$C_{ijkl}^{S} = \frac{1}{V} \left(\frac{\partial^{2} H}{\partial \eta_{ij} \partial \eta_{kl}} \right)_{S} = \frac{1}{V} \left(\frac{\partial^{2} E}{\partial \eta_{ij} \partial \eta_{kl}} \right)_{S} + \frac{P}{2} \left(2\delta_{ij} \delta_{kl} - \delta_{il} \delta_{jk} - \delta_{jl} \delta_{ik} \right)$$
(3)

ABINIT calculates
$$\frac{1}{V} \frac{\partial}{\partial \eta_{11}} (V \sigma_{11})$$

Example:
$$C_{11} = \frac{1}{V} \left(\frac{\partial^2 E}{\partial \eta_{11} \partial \eta_{11}} \right)_S = \frac{1}{V} \frac{\partial}{\partial \eta_{11}} (V \sigma_{11}) + P$$
 {4}

