

Université de Liège

Computation of non-linear optical properties from density functional perturbation theory

M. Veithen, X. Gonze and Ph. Ghosez

Supported by: FNRS Belgium, VW Stiftung

Outline

• Introduction

- Taylor expansion of a thermodynamic potential $F(\tau, \eta, E)$: 2nd- and 3th- order energy derivatives
- Non-linear optical properties:
 - Non-linear optical susceptibilities
 - Raman tensors
 - Electrooptic coefficients
- Theoretical background
 - -2n+1 theorem
 - Electric field perturbation
- Implementation in ABINIT
 - General structure of the implementation
 - Use of symmetries
 - Analysis of the results with ANADDB
- In practice
 - How to use the non-linear response part: explanation of input variables
 - Examples
- Conclusions

3th-order energy derivatives: PEAD & DAPE formulation

2nd- and 3th-order energy derivatives

• Taylor expansion of a thermodynamic potential $F(\tau, \eta, E)$

$$F(\lambda) = F(0) + \sum_{i} \frac{\partial F}{\partial \lambda_{i}} \lambda_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} F}{\partial \lambda_{i} \partial \lambda_{j}} \lambda_{i} \lambda_{j} + \frac{1}{6} \sum_{i,j,k} \frac{\partial^{3} F}{\partial \lambda_{i} \partial \lambda_{j} \partial \lambda_{k}} \lambda_{i} \lambda_{j} \lambda_{k} + \dots$$

- Perturbations λ_i
 - E : electric field
 - $-\tau$: atomic displacement
 - $-\eta$: strain
- First-order derivatives

- Forces :
$$f = -\frac{\partial F}{\partial \tau}$$

- Stress tensor : $\sigma = \frac{1}{\Omega} \frac{\partial F}{\partial \eta}$
- Polarization : $P = -\frac{1}{\Omega} \frac{\partial F}{\partial E}$ - Berry phase formalism

2nd- and 3th-order energy derivatives

- Second-order derivatives (linear response approach)
 Pure derivatives
 - Interatomic force constants : $K = \frac{\partial^2 F}{\partial r^2}$
 - Electronic dielectric tensor : ε

$$\varepsilon = 1 - \frac{4\pi}{\Omega} \frac{\partial^2 F}{\partial E^2}$$

- Rigid-atom elastic constants : $C = \frac{1}{\Omega} \frac{\partial^2 F}{\partial n^2}$
- Mixed derivatives
 - Born effective charges

- $Z^* = -\frac{\partial^2 F}{\partial E \partial \tau}$ $e = -\frac{1}{\Omega} \frac{\partial^2 F}{\partial E \partial \eta}$ $\frac{\partial F^2}{\partial F}$
- Clamped-ion piezoelectric tensor : $e = -\frac{1}{\Omega} \frac{\partial^2 F}{\partial E \partial \eta}$
- Internal strain coupling parameters : $\gamma = \frac{\partial F^2}{\partial \tau \partial \eta}$

2nd- and 3th-order energy derivatives

- Third-order derivatives
 - Non-linear optical susceptibilities
 - 1st-order derivatives of $X^{(1)}$
 - Rigid-atom elasto-optic coefficients :
 - Anharmonic force constants
 - Non-linear dipole coefficients

$$\chi^{(2)} = \frac{-1}{2\Omega} \frac{\partial^{3} F}{\partial E^{3}}$$

$$\left\{ \frac{\partial \chi^{(1)}}{\partial \tau} = -\frac{1}{\Omega} \frac{\partial^{3} F}{\partial \tau \partial E^{2}} \right\}$$
Actually implemented in ABINIT
$$\frac{\partial^{3} F}{\partial \eta \partial E^{2}}$$

$$\frac{\partial^{3} F}{\partial \tau^{3}}$$

$$\frac{\partial^{3} F}{\partial \tau^{2} \partial E}$$

Non-linear optical properties

• Non-linear optical susceptibilities

$$P = P^{s} + \chi^{(1)}E + \chi^{(2)}E^{2} + \dots$$

• Non-resonant Raman scattering (Stokes effect)

Scattering efficiency

R

$$\frac{dS}{d\Omega} = \frac{(\omega_0 - \omega_m)^4}{c^4} |\boldsymbol{e}_s \cdot \boldsymbol{\alpha}^m \cdot \boldsymbol{e}_0|^2 \frac{\hbar}{2\omega_m} (n_m + 1)$$

aman susceptibility

$$\alpha_{ij}^{m} = \sqrt{\Omega} \sum_{\kappa \alpha} \frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\kappa \alpha}} u_{m}(\kappa \alpha)$$

<u>Non-linear optical properties</u>

- Computation of $\frac{\partial X_{ij}^{(1)}}{\partial \tau_{\kappa\alpha}}$
 - Transverse optical (TO) phonon modes

$$\frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\kappa\alpha}} \Big|_{E=0} = \frac{-1}{\Omega} \frac{\partial^{3} F}{\partial \tau_{\kappa\alpha} \partial E_{i} \partial E_{j}} \Big|_{E=0}$$

- Longitudinal optical (LO) phonon modes ($\mathbf{q} \rightarrow 0$)
 - → Macroscopic electric field generated by a polar LO mode
 - → Additional change of $\chi^{(1)}$ related to the NLO susceptibilities $\chi^{(2)}$

$$\frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\kappa\alpha}} = \frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\kappa\alpha}} \Big|_{E=0} - \frac{8\pi}{\Omega} \frac{\sum_{l} Z_{\kappa\alpha l}^{*} q_{l}}{\sum_{l,l'} q_{l} \varepsilon_{ll'} q_{l'}} \sum_{l} \chi_{ijl}^{(2)} q_{l}$$

– Sum rule

$$\sum_{\kappa} \frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\kappa\alpha}} = 0$$

Non-linear optical properties

• Electrooptic effect

Modification of the index of refraction of a compound induced by a static (or low frequency) electric field

$$\Delta (\varepsilon^{-1})_{ij} = \sum_{\gamma=1}^{3} r_{ij\gamma} E_{\gamma}$$

Applications:

• Holographic applications (photorefractive effect)

Non-linear optical properties

• Computation of the clamped EO coefficients

$$\frac{d \varepsilon_{ij}}{d E_{\gamma}} = \frac{\partial \varepsilon_{ij}}{\partial E_{\gamma}} \Big|_{\tau=0} + \sum_{\kappa \alpha} \frac{\partial \varepsilon_{ij}}{\partial \tau_{\kappa \alpha}} \Big|_{E=0} \frac{\partial \tau_{\kappa \alpha}}{\partial E_{\gamma}}$$
ionic contribution

bare electronic part

- Electronic contribution:
 - Interaction of the electric field with the valence electrons
 - Clamped atomic positions

$$r_{ij\gamma}^{el} = \frac{-8\pi}{n_i^2 n_j^2} \chi_{ijk}^{(2)} \Big|_{k=\gamma}$$

- Ionic contribution:
 - Electric field induced atomic displacements ∞

$$\frac{p_{m,\alpha}}{\omega_m^2}$$

$$r_{ij\gamma}^{ion} = \frac{-4\pi}{\sqrt{\Omega} n_i^2 n_j^2} \sum_m \frac{\alpha_{ij}^m p_{m,\gamma}}{\omega_m^2} \qquad p_{m,\alpha} = \sum_{\kappa\beta} Z_{\kappa\alpha\beta}^* u_m(\kappa\beta)$$

Computation of third-order energy derivatives

- Non-linear response functions: $\chi_{ijl}^{(2)}$ and $\frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\kappa\alpha}}$
- 2n + 1 theorem

$$F^{(3)} = \sum_{\alpha} \left\langle \psi_{\alpha}^{(1)} | H^{(1)} | \psi_{\alpha}^{(1)} \right\rangle - \sum_{\alpha \beta} \Lambda_{\beta \alpha} \left\langle \psi_{\alpha}^{(1)} | \psi_{\beta}^{(1)} \right\rangle + \frac{1}{6} \int d\mathbf{r} d\mathbf{r}' d\mathbf{r}'' \frac{\delta^{3} F_{xc} [n^{(0)}]}{\delta n(\mathbf{r}) \delta n(\mathbf{r}') \delta n(\mathbf{r}'')} n^{(1)}(\mathbf{r}) n^{(1)}(\mathbf{r}') n^{(1)}(\mathbf{r}'')$$

• Electric field dependent energy functional

$$F[\psi, E] = F^{(0)}[\psi] - \Omega P \cdot E$$

• Berry phase polarization

Continuous form:
$$P = \frac{-2ie}{(2\pi)^3} \sum_{n} \int d\mathbf{k} \langle u_{n,k} | \nabla_k | u_{n,k} \rangle$$

Discretized form:
$$P = \frac{2e}{N_k \Omega} \sum_k \sum_b \omega_b b \Im \ln [det S(k, k+b)]$$

 $S_{mn}(k, k+b) = \langle u_{m,k} | u_{n,k+b} \rangle$

R. W. Nunes and X. Gonze, PRB 63, 155107 (2001)

Computation of third-order energy derivatives

- <u>D</u>iscretization <u>A</u>fter <u>P</u>erturbation <u>E</u>xpansion (DAPE)
 - Perturbation expansion

$$F_{pol}^{(3)} = \frac{2ie}{(2\pi)^3} \int d\mathbf{k} \sum_{n} \langle u_{nk}^{(1)} | \frac{\partial}{\partial k} \left(\sum_{m} |u_{mk}^{(1)} \rangle \langle u_{mk}^{(0)} | \right) | u_{nk}^{(0)} \rangle$$

Expression derived first by A. Dal Corso and F. Mauri, PRB 50, 5756 (1994).

- Discretization (finite difference formula of Marzari and Vanderbilt)

$$\nabla f(\mathbf{k}) = \sum_{\mathbf{b}} \mathbf{b} \omega_{b} [f(\mathbf{k} + \mathbf{b}) - f(\mathbf{k})]$$
$$\sum_{b} \omega_{b} b_{\alpha} b_{\beta} = \frac{g_{\alpha\beta}}{(2\pi)^{2}}$$

N. Marzari and D. Vanderbilt, PRB 56, 12847 (1997)

<u>Computation of third-order energy derivatives</u></u>

• <u>Perturbation Expansion After Discretization (PEAD)</u>

$$F_{pol}^{(3)} = \frac{-e}{N_{k}} \sum_{k} \sum_{b} \omega_{b} b \left\{ 2 \sum_{m,n} S_{nm}^{(2)} Q_{mn} - \sum_{m,n,l,l'} S_{mn}^{(1)} Q_{nl} S_{ll'}^{(1)} Q_{l'm} \right\}$$

$$S_{mn}(k, k+b) = \left\langle u_{m,k} \middle| u_{n,k+b} \right\rangle \qquad S_{mn}^{(1)}(k, k+b) = \left\langle u_{m,k}^{(1)} \middle| u_{n,k+b} \right\rangle + \left\langle u_{m,k} \middle| u_{n,k+b} \right\rangle$$

$$Q(k, k+b) = S^{-1}(k, k+b) \qquad S_{mn}^{(2)}(k, k+b) = \left\langle u_{m,k}^{(1)} \middle| u_{n,k+b} \right\rangle$$

 Convergence (k-point sampling) Non-linear optical susceptibility of AlAs computed on a n × n × n grid of special k-points

Better convergence of the PEAD formulation

Implementation in ABINIT: general structure

2n + 1 theorem: basic ingredients to compute 3^{th} - order energy derivatives

- Ground-state density & wavefunctions
 1st- order wavefunctions & densities

- no SCF cycles

Implementation in ABINIT

- Use of symmetries
 - k-point sampling
 - use time-reversal symmetry to sample $\frac{1}{2}$ BZ (kptopt = 2)
 - no spatial symmetry operations (reflections/rotations) are used to decrease further the number of k-points
 - similar to the linear response calculation of the electric field perturbation
 - Irreductible perturbations
 - Electric field: $\frac{d u_{nk}}{d E_{\alpha}} \qquad \alpha = 1, 2, 3$
 - Phonons : $\frac{d u_{nk}}{d \tau_{\kappa\alpha}}$ irreductible perturbations only
 - When computing the $E^{(3)}$, exclude those elements that are zero by symmetry

Implementation in ABINIT

• Output of 3th-order energy derivative to a DDB

Analysis with ANADDB

- Non-linear optical susceptibilities
- Reimpose Raman sum rule

$$\sum_{\kappa} \frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\kappa\alpha}} = 0$$

- Raman susceptibilities of TO & LO modes
- EO tensor & decomposition on TO modes

Implementation in ABINIT: general structure

2n + 1 theorem: basic ingredients to compute 3^{th} - order energy derivatives

- Ground-state density & wavefunctions
 1st- order wafefunctions & densities

no SCF cycles

In practice: how to use the non-linear response part

- First step: GS calculation of the wavefunctions and the density
 kptopt = 2
- <u>Second step:</u> linear response calculation of the 1WF and 1DEN
 - *prtden* = 1: write 1DEN to disk file
 - prepanl = 1
 - compute electric fiel perturbation along 3 directions
 - phonon perturbations: do not use symmetries to decrease the number of k-points
- **<u>Third step:</u>** non-linear response calculation
 - optdriver = 5
 - getden, get1den, getwfk & get1wf: read WF and DEN
 - rf<u>1</u>elfd, rf<u>1</u>phon, rf<u>1</u>atpol, rf<u>1</u>dir rf<u>2</u>elfd, rf<u>2</u>phon, rf<u>2</u>atpol, rf<u>2</u>dir rf<u>3</u>elfd, rf<u>3</u>phon, rf<u>3</u>atpol, rf<u>3</u>dir

define the 3th-order energy derivatives

In practice: how to use the non-linear response part

- **Fourth step:** use MRGDDB to merge the DDB's of the linear and non-linear response calculations
- **<u>Fifth step:</u>** use ANADDB to analyse the results
 - *nlflag*: non-linear properties flag
 - ramansr: reimpose Raman sum rule
 - *prtmbm*: print mode-by-mode decomposition of the EO tensor
 - *alphon*: align phonon-mode eigendisplacements of degenerate modes along the cartesian directions (ATTENTION: the cartesian axes must correspond to the principal axes of the crystal)

In practice: how to use the non-linear response part

- <u>Caution:</u>
 - The computation of 3th-order energy derivatives requires large k-point grids
 - The smaller the bandgap, the larger the number of k-points required to obtain converged results
 - mkmem = 0 is <u>not</u> yet available
 - Insulators only: *nband* = number of (doubly occupied) valence bands
 - No spin polarization/spinor wavefunctions (*nsppol* = 1 & *nspinor* = 1)
 - LDA only: actually ixc = 3 & ixc = 7 are available
 - Until v4.3: sequential execution only
 - k-point parallelization will probably be available in v4.4

Application to semiconductors

Non-linear optical susceptibilities

Method	AlAs	AIP
2n + 1 theorem	35	21
2n + 1 theorem [1]	32	19
Finite electric fields [2]	32	19
Sum over states [3]	34	21
2N + 1 theorem + SCI	21	13
Sum over states + SCI [3]	21	13

[1] A. Dal Corse et al., PRB 53, 15638 (1996)

[2] I. Souza et al., PRL 89, 117602 (2002)

[3] Z. H. Levine and D. C. Allan, PRB 44, 12781 (1991)

Raman polarizabilities (Å²)

	Si	AlAs	AIP
2n + 1 theorem			
Present	20.02	8.48	4.3
DS [1]	23.56	7.39	5.13
Finite differences			
Present	20.17	8.59	4.25
DS [1]	20.44	5.64	4.44
BR [2]	26.16		
Experiment [3]	23 ± 4		

[1] G.Deinzer and D. Strauch, PRB 66, 100301 (2002)

[2] S. Baroni and R. Resta, PRB 33, 5969 (1986)

[3] J. Wagner and M. Cardona, Solid State Communications 48, 301 (1983)

Raman intensities of ferroelectrics

• Raman spectrum of LiNbO₃ (A_1^T modes)

Theoretical spectrum

Experimental spectrum

Ridah et al., PRB 56, 5967 (1997)

Raman intensities of ferroelectrics

• Raman spectrum of tetragonal PbTiO₃

Theoretical spectrum

M. D. Fontana et al., J. Phys. C **3**, 8695 (1991)

Clamped EO tensor in LiNbO₃

Zone-center TO phonons:
$$4 A_1 + 5 A_2 + 9 E$$

 \downarrow \downarrow \downarrow
 $r_{13} \& r_{33}$ $r_{22} \& r_{33}$

 $-r_{22}$ r_{13} r_{13} r_{22} r_{33} • $\underline{r} =$ r_{51} • r_{51} • $-r_{22}$ •

		A ₁ modes			E modes	
	ω (cm ⁻¹)	r ₁₃ (pm/V)	r ₃₃ (pm/V)	ω (cm ⁻¹)	r ₂₂ (pm/V)	r ₅₁ (pm/V)
Elec.		1.02	3.99		0.16	1.04
TO1	243	6.20	18.53	155	3.02	7.46
TO2	287	-0.23	-0.43	218	0.36	1.46
ТОЗ	355	-0.14	0.04	264	0.58	1.3
TO4	617	2.82	4.8	330	-0.26	1.24
TO5				372	-0.19	0.41
TO6				384	-0.09	-0.21
ТО7				428	0.2	0.2
TO8				585	0.73	2.05
то9				677	0.04	-0.02
Tot.		9.68	26.93		4.56	14.94
Exp. [1]		8.6	30.8		3.4	28
IR + Raman [2]		12	39		6	19
BC [3]			25.9			20.5

[1] H. Nishihara et al., "Optical Integrated Circuits" (McGRAW-Hill, 1985)

[2] W. D. Johnston Jr., PRB 1, 3494 (1970)

[3] C.-C. Shih and A. Yariv, J. Phys. C 15, 825 (1982)

Phase transition in LiNbO₃

- Paraelectric phase stable above 1480 K
- One single transition to a ferroelectric ground state
- Phase transition driven by a soft A_{2u}^{T} mode

Phonons in the paraelectric phase

Rhombohedral unit cell

Conclusions

Implementation of non-linear response functions in ABINIT

• 3th-order energy derivatives actually implemented

 Non-linear optical susceptibilities
 Raman intensities of TO & LO modes EO coefficients

- PEAD expression for the perturbation expansion of the polarization
- Use of symmetry operations & DDB output

 \rightarrow easy and efficient compution of 3th-order energy derivatives