

#### Université de Liège

# First-principles calculations of insulators in a finite electric field

# M. Veithen, I. Souza, J. Íñiguez, D. Vanderbilt, K. M. Rabe and Ph. Ghosez

<u>Supported by</u>: FNRS Belgium, VW Stiftung, Communauté Française & Rutgers University

Many thanks: Donald R. Hamann

# <u>Outline</u>

- <u>Introduction</u>: Difficulties related to the electric field perturbation
- <u>1<sup>st</sup> part:</u> Structural response to macroscopic electric fields
  - Formalism
  - Berry phase calculation of **P** and the ddk
  - Implementation
  - In practice: how to optimize the structure for a fixed polarization
  - Applications
- $2^{nd}$  part: First-principles approach to insulators in finite electric fields
  - Formalism
    - Definition of an electric field dependent energy functional
    - For  $E < E_c$ : minimization of the energy functional
    - Computation of forces and stresses
  - Implementation in ABINIT
  - In practice: how to do a finite electric field calculation
  - Applications
- Conclusions

# **Electric field perturbation: difficulties**

The perturbation  $-\mathbf{E}\cdot\mathbf{r}$  is <u>nonperiodic</u> and <u>unbound from below</u>

• Nonperiodic

Methods based on Bloch's theorem and eigenstates  $\psi_{nk}$  do not apply

• Unbound from below

Energy can always be lowered by transferring charge from valence states in one region to conduction states in a distant region



Electric field "bends" the energy bands

- $\rightarrow$  Dielectric breakdown by interband (Zener) tunneling
- → An infinite crystal in the presence of an electric field does not have a ground-state

## **1<sup>st</sup> Method: Structural response to macroscopic electric fields**

#### **Electric field derivatives of arbitrary order can be computed from DFPT**

*R. W. Nunes and X. Gonze, PRB* **63**, 155107 (2001)

- Low-order Taylor expansion of the energy with respect to the electric field
- Dependence of the energy on the structural degrees of freedom is <u>preserved to all orders</u>
- Two step approach:
  - 1) Map out the energy as a function of the polarization
  - 2) Use this energy surface & field-coupling term to compute the ground state structure in the presence of the electric field
- More informations

*Na Sai, K. M. Rabe and D. Vanderbilt, PRB* **66**, 104108 (2002) *H. Fu and R. E. Cohen, Nature* **403**, 281 (2000)

• Structural response at constant electric field E

$$F(E) = \min_{\mathbf{R}, \eta} F(\mathbf{R}, \eta, \mathbf{E}) < \mathbf{R}_{eq}(E) \\ \eta_{eq}(E)$$

Strain  $\eta$  and atomic positions **R** at fixed electric field **E** 

- Polarization: thermodynamic conjugate of **E**:  $P_{\alpha} = \frac{-1}{\Omega} \frac{\partial F}{\partial E_{\alpha}}$
- Legendre transformation ( $\lambda = \Omega E$ ):

$$\widetilde{F}(\boldsymbol{R},\boldsymbol{\eta},\boldsymbol{P}) = \min_{\boldsymbol{\lambda}} [F(\boldsymbol{R},\boldsymbol{\eta},\boldsymbol{\lambda}) + \boldsymbol{\lambda} \cdot \boldsymbol{P}]$$

$$\widetilde{F}(\boldsymbol{P}) = \min_{\boldsymbol{R},\boldsymbol{\eta}} \widetilde{F}(\boldsymbol{R},\boldsymbol{\eta},\boldsymbol{P})$$

Strain and atomic positions at fixed polarization:

$$\boldsymbol{R}_{\boldsymbol{eq}}(\boldsymbol{P}) \,\&\, \boldsymbol{\eta}_{\boldsymbol{eq}}(\boldsymbol{P})$$

• Inverse Legendre transformation

$$F(\boldsymbol{E}) = \min_{\boldsymbol{P}} \left[ \widetilde{F}(\boldsymbol{P}) - \boldsymbol{\Omega} \boldsymbol{E} \cdot \boldsymbol{P} \right]$$

• Taylor expansion of  $F(\mathbf{R}, \eta, \mathbf{E})$  around  $\mathbf{E} = 0$ 

$$F(\boldsymbol{R},\boldsymbol{\eta},\boldsymbol{E}) = F(\boldsymbol{R},\boldsymbol{\eta},0) + \sum_{\alpha} E_{\alpha} \frac{\partial F(\boldsymbol{R},\boldsymbol{\eta},\boldsymbol{E})}{\partial E_{\alpha}} \Big|_{E=0} + \frac{1}{2} \sum_{\alpha,\beta} E_{\alpha} E_{\beta} \frac{\partial^{2} F(\boldsymbol{R},\boldsymbol{\eta},\boldsymbol{E})}{\partial E_{\alpha} E_{\beta}} \Big|_{E=0} + \dots$$

• Truncation of the Taylor expansion at the lowest order

$$F_1(\boldsymbol{R}, \boldsymbol{\eta}, \boldsymbol{E}) = F(\boldsymbol{R}, \boldsymbol{\eta}, 0) - \boldsymbol{\Omega} \boldsymbol{E} \cdot \boldsymbol{P}(\boldsymbol{R}, \boldsymbol{\eta}, 0)$$

Approximation is supposed to be valid in systems where the ionic contribution to the polarization dominates (f. ex. ferroelectrics)

• Resulting expression

$$\widetilde{F}(\mathbf{P}) = \min_{\lambda, \mathbf{R}, \eta} \left[ F(\mathbf{R}, \eta, 0) + \lambda \cdot (\mathbf{P} - \mathbf{P}(\mathbf{R}, \eta, 0)) \right]$$

• System of equations to be solved

$$\frac{\partial F(\mathbf{R}, \eta, 0)}{\partial R} - \frac{\partial P(\mathbf{R}, \eta, 0)}{\partial R} \lambda = 0$$
$$\frac{\partial F(\mathbf{R}, \eta, 0)}{\partial \eta} - \frac{\partial P(\mathbf{R}, \eta, 0)}{\partial \eta} \lambda = 0$$
$$\mathbf{P}(\mathbf{R}, \eta, 0) = \mathbf{P}$$

• In practice: Taylor expansion of  $F(\mathbf{R},\eta,0)$  and  $P(\mathbf{R},\eta,0)$ 

$$F(\mathbf{R}, \eta, 0) = F(\mathbf{R}_{0}, \eta_{0}, 0) - f \,\delta \,\mathbf{R} + \Omega \,\sigma \,\delta \,\eta + \frac{1}{2} K \,\delta \,\mathbf{R}^{2} + \frac{\Omega}{2} C \,\delta \,\eta^{2} + \gamma \,\delta \,\mathbf{R} \,\delta \,\eta$$
$$P(\mathbf{R}, \eta, 0) = P(\mathbf{R}_{0}, \eta_{0}, 0) + \frac{1}{\Omega} Z^{*} \,\delta \,\mathbf{R} + e \,\delta \,\eta$$

- $\mathbf{R}_0, \eta_0$  : trial guess of the initial coordinates and strains ( $\delta \mathbf{R} = \mathbf{R} \mathbf{R}_0 \& \delta \eta = \eta \eta_0$ )
- $f, \sigma$  : Hellmann-Feynmann forces and stresses
- *K* : interatomic force constants
- *C* : rigid atom elastic constants
- $\gamma$  : coupling parameters between **R** and  $\eta$
- $Z^*$  : Born effective charges
- *e* : clamped ion piezoelectric tensor

• Linear systems of equations

$$\begin{pmatrix} K & \gamma & -1/\Omega Z^* \\ \gamma & \Omega C & -e \\ -1/\Omega Z^* & -e & 0 \end{pmatrix} \begin{pmatrix} \delta R \\ \delta \eta \\ \lambda \end{pmatrix} = \begin{pmatrix} f \\ -\Omega \sigma \\ \Delta P \end{pmatrix}$$

 $\Delta \mathbf{P}$  = difference between initial and target values of  $\mathbf{P}$ 



## **Berry phase calculation of P and the ddk**

- Definition of the Born effective charges  $Z^* = \Omega \frac{\partial P}{\partial R}$
- Computation of **P**: string averaged Berry phase

$$P = \frac{-2e}{(2\pi)^3} \int dk_\perp \Im \ln\left(\prod \det S(k, k+b)\right)$$

k-b

• Computation of Z<sup>\*</sup> (linear response, non-stationarry expression)

$$Z^* = \frac{2 i e \Omega}{(2\pi)^3} \int dk \sum_{m}^{occ} \left\langle \frac{\partial u_{nk}}{\partial R} \right| \frac{\partial u_{nk}}{\partial k} \rangle$$

- **PROBLEM:** If the ddk is computed from linear response, the relation between Z<sup>\*</sup> and **P** is only satisfied in a the limit of a dense k-point mesh
- Finite k-point grid: finite difference formula of the ddk

$$\frac{\partial u_{nk}}{\partial k} = \frac{1}{2b} \left[ \frac{u_{nk+b}}{\langle u_{nk} | u_{nk+b} \rangle} - \frac{u_{nk-b}}{\langle u_{nk} | u_{nk-b} \rangle} \right]$$

#### • Comments:

- No violoation of the charge neutrality
- Same arguments in case of the piezoelectric tensor

## **Implementation**

- <u>ABINIT:</u> new Berry phase routine (berryphase\_new.f)
  - Easier to use
  - Polarization in cartesian coordinates
  - MPI parallelization over k-points
- ANADDB:



#### New routine relaxpol.f

- Called from anaddb.f
- Compute **P** in cartesian coordinates
- Solve linear system of equations
- Compute λ, residual forces and stresses
- Update atomic positions and lattice constants

## In practice (v.4.3.x)

- 1<sup>st</sup> step: Ground state calculation of the forces and the stress tensor
- **2<sup>nd</sup> step:** Berryphase calculation of **P** and the ddk
  - *kptopt* = 3
  - *berryopt* = -3: use berryphase\_new.f routine
  - $rfdir = 1 \ 1 \ 1$ : compute projection of **P** & ddk along x, y and z
  - *nband* = number of occupied bands
- **3<sup>th</sup> step:** Linear response calculation
- 4<sup>th</sup> step: Use ANADDB to compute new atomic positions and lattice constants
  - polflag = 1
  - *targetpol* = target value of the polarization (cartesian coordinates &  $C/m^2$ )
  - relaxat, relaxstr
  - natfix, istrfix { specify which degrees of freedom are allowed to relax
- Repeat steps 1, 2, 3 & 4 until convergence is reached

# **Application: double well in BaTiO**<sub>3</sub>



# **Application: c/a of PbTiO**<sub>3</sub> as a function of P

#### Motivation: PbTiO<sub>3</sub> thin films grown on a SrTiO<sub>3</sub> substrate

PbTiO<sub>3</sub>

SrTiO<sub>3</sub>

#### **Result**

*a* has been fixed at the theoretical lattice constant of  $SrTiO_3$ 

#### Experiment:

c/a decreases with decreasing film thickness <u>Theory (effective hamiltonian):</u>

depolarizing electric field

 $\rightarrow$  reduction of the polarization

 $\rightarrow$  reduction of c/a



C. Lichtensteiger et al., cond-mat/0404228



# <u>Application: non-linear dielectric response of</u> <u>tetragonal PbTiO</u><sub>3</sub>

#### $\underline{P}_{\overline{z}}$ as a function of an electric field along z



Ionic dielectric constant:  $\varepsilon = 17.82$ (linear response  $\varepsilon = 17.37$ )

**Tunability:** 

$$\frac{dX_{zz}}{dE_z} = 13711 \ pm/V$$

## 2<sup>nd</sup> method: First-principles approach to insulators in finite electric fields

For a supercell of size L = N<sub>k</sub>a (a = unit cell size, N<sub>k</sub> = number of kpoints), use only fields smaller than  $E_c \sim \frac{E_g}{N_L a}$ 

• For  $E < E_c$ , we can minimize the energy functional

$$F\left[\left\{u_{nk}\right\}\right] = F_{KS} - a^{3} \boldsymbol{E} \cdot \boldsymbol{P}$$

- $F_{KS}$  = Kohn-Sham energy at zero electric field
- $\mathbf{P}$  = macroscopic polarization that is computed as a Berry phase of "field polarized" Bloch functions  $u_{nk}$
- Long-lived metastable state
- For  $E > E_c$ , *F* has no minimum
- More informations

I. Souza, J. Íñiguez and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002)

## **Minimization of the energy functional F**

- Strategy: use the preconditione cg minimization implemented in ABINIT to minimiz  $F_{KS}$
- Gradient of the energy functional F  $|G_{nk}\rangle = \frac{\delta F}{\delta \langle u_{nk}|}$

$$G_{nk} \rangle = H_{KS}(\mathbf{k}) | u_{nk} \rangle + | W_{nk} \rangle$$

| usual zero-field | electric field |  |  |
|------------------|----------------|--|--|
| term             | term           |  |  |

• Electric field term

$$|W_{nk}\rangle = C(E) \sum_{m} \left[ S_{mn}^{-1}(k, k+b) | u_{mk+b}\rangle - S_{mn}^{-1}(k, k-b) | u_{mk-b}\rangle \right]$$

• Transform  $|G_{nk}\rangle$  into a preconditioned cg search direction  $|D_{nk}\rangle$ 

#### **Minimization of the energy functional F**

- Update of a state  $|u_{nk}\rangle$  $|u_{nk}\rangle^{(new)} = \cos(\theta) |u_{nk}\rangle^{(old)} + \sin(\theta) |D_{nk}\rangle$
- Minimize  $F(\theta)$ 
  - E = 0: analytic formula for  $\theta_{min}$ M. C. Payne et al., Rev. Mod. Phys. 64, 1045 (1992)
  - $E \neq 0$ : no analytic formula for  $\theta_{min}$ , line minimization must be performed numerically

## **Computation of forces and stresses**

• Field polarized Bloch functions are stationary points of F, the Hellmann-Feynmann theorem yields for the force on atom j

$$f_{j} = -\frac{dF}{dr_{j}} = -\frac{\partial F}{\partial r_{j}}$$

(no implicit dependence on  $r_i$  via the wavefunctions)

$$F\left[\left\{u_{nk}\right\}\right] = F_{KS} - a^{3} E \cdot \left(P_{el} + P_{ion}\right)$$

no explicit dependence on r<sub>i</sub>

$$\longrightarrow f_{j} = -\frac{\partial F_{KS}}{\partial r_{j}} + eZ_{j}E$$

• Similar arguments show that the expression used to compute the stress under zero electric field remains valid

# **Implementation in ABINIT (4.3.x)**

#### gstate.f

Initialization of Berry phase calculation:

- ►<u>initberry.f</u>
- Polarization, ddk & electric field
- store informations in the *efield\_type* structured datatype

### →<u>scfcv.f</u>

► **berryphase\_new.f** Initialize polarization <u>pel\_cg(1:3)</u> & Initialize overlap matrices

Start SCF optimization of wavefunctions

**≻**<u>vtorho.f</u>





Non-SCF line minimizations. For each iteration

- update overlap matrices
- add the electric field contribution to the gradient
- perform line minimization numerically (<u>linemin.f</u>)

►<u>Update polarization</u>: add change in Berry phase to <u>pel\_cg(1:3)</u>

End SCF optimization of wavefunctions

► <u>berryphase\_new.f</u> Recompute polarization, check that it is consistent with the value obtained from the update of the wavefunctions

## In practice (4.3.x)

- $1^{st}$  step: Perform a calculation under zero electric field
- <u>2<sup>nd</sup> step:</u> Electric fiel calculation (use wavefunctions computed during the first step to initialize the calculation)
  - berryopt = 4
  - efield(1:3) = cartesian coordinates of the electric field in atomic units
  - -nsym = 1
  - kptopt = 3
  - *nband* = number of valence bands

#### • <u>COMMENTS:</u>

- insulators only
- MPI parallelization not yet implemented
- no spin polarization (spin polarization probably available in ABINITv4.4.x)
- You should increase the amplitude of the electric field in small steps
- <u>Suggestion</u>: use multiple datasets. For each dataset, use a slightly larger value of the electric field and take wavefunctions of the previous dataset to initialize the SCF cycle.

## **Applications:** AlAs, electric field along x



#### **Force on Al along the x direction**

Born effective charges:  $Z^* = \Omega \frac{\partial P}{\partial \tau} = \frac{\partial f}{\partial E}$ 

Finit electric field calculation:  $Z^* = 2.1057$ 

Linear response calculation:  $Z^* = 2.1019$ 

## **Applications:** AlAs, electric field along x



#### **Optical dielectric constant**

$$\varepsilon = 1 - \frac{4\pi}{\Omega} \frac{\partial^2 F}{\partial E^2} = 1 + 4\pi \frac{\partial P}{\partial E}$$

| Method          | Value  |
|-----------------|--------|
| F(E)            | 9.6517 |
| P(E)            | 9.6539 |
| linear response | 9.9417 |

## **Applications: AlAs, electric field along (1,1,1)**

#### Polarziation as a function of $\underline{\mathbf{E}} = \mathbf{E}^*(1,1,1)$



Non-linear optical susceptibilities

$$\chi^{(2)} = \frac{1}{2} \frac{\partial^2 P}{\partial E^2}$$

Finite electric field calculation:  $\chi^{(2)} = 70.1393 \text{ pm/V}$ 

Non-linear response calculation:  $\chi^{(2)} = 69.6073 \text{ pm/V}$ 

## **Application to cubic semiconductors**

 $\begin{aligned} \mathsf{Black} &= \mathsf{Theory} \\ \mathsf{Blue} &= \mathsf{Experiment} \end{aligned}$ 

|                          | GaAs             | AlAs    | GaP              | AIP     |
|--------------------------|------------------|---------|------------------|---------|
| a (a.u.)                 | 10.45            | 10.59   | 10.11            | 10.24   |
|                          | (10.68)          | (10.69) | (10.28)          | (10.33) |
| $Z^*_{ m cation}$        | 2.00             | 2.14    | 2.10             | 2.24    |
|                          | (2.16)           | (2.18)  | (2.04)           | (2.28)  |
| $\epsilon_\infty$        | 11.9             | 9.6     | 9.4              | 8.1     |
|                          | (10.9)           | (8.2)   | (9.0)            | (7.5)   |
| $\epsilon_{ m static}$   | 13.5             | 11.5    | 11.2             | 10.2    |
|                          | (13.1)           | (10.1)  | (11.1)           | (9.8)   |
| $\chi^{(2)}$ (pm/V)      | 134<br>(166)     | 64      | 66<br>(74)       | 39      |
| $\overline{\gamma}_{14}$ | -0.40<br>(-0.32) | -0.10   | -0.25<br>(-0.18) | 0.05    |

I. Souza et al., PRL 89, 117602 (2002)

# **Conclusions**

#### **First-principles calculations of insulators in finite electric fields**

- <u>1<sup>st</sup> method:</u> structural response to macroscopic electric fields
  - Derivatives of the energy with respect to the electric field can be accurately computed from DFPT
  - Low order Taylor expansion of the energy with respect to the electric field
  - Map out the energy as a function of the polarization
  - Iterative optimization of the structure under the constrained of a fixed polarization

#### • <u>2<sup>nd</sup> method</u>: first-principles approach to insulators in finite electric fields

- Practical scheme for computing the electronic structure of insulators under a finite bias
- For  $E < E_c$ : minimization of a modified energy functional
- Accurate computation of the total energy, the polarization, the forces and stresses
- Finite difference calculation of electric field derivatives