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Triying to use parallel machinesfor M|

Rewrite the equation of motion symbolically as
= du — A(u), discretize it using a timestep AT.

If u,, IS our position in phase space after n steps, we

iIntroduce the propagator: Far(u,) = tpt1

Far describes merely the way we go from one
configuration to the next.

One could introduce, for any set v,
J =" (Far(vn) — vny1)?, and try to minimize it in
parallel.

Here, we follow another route (parareel algorithm) more
akin to a feedback mechanism.
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Theparareal algorithm (in graphics)

* Use two force fields as a predictor-corrector
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The first step is exact
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Theparareal algorithm (in equations)

* Use two force fields as a predictor-corrector.
* First field:

U%H = GAT(“%)

u8:u0

* Gar(uw)) is the coarse propagator.
o Far(ud) is the fine propagator.
* The erroris: AY = Far(u)) — Gar(ud)

 Naturally, Fa7(uy) can be computed in parallel
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Thefeedback process(Lionset al 2001

* Propagate a second time using the coarse propagator
corrected by A

0
uvlz+1 = GAT(Ur,lq,) + Aniq

* The process can be iterated, and this defines our
successive trajectories, denoted by u*

urty = Gar(uft) + Far(ul) — Gar(ul)
ulg — U

* EXpensive Far in// on N processors
o Efficient if keony < N and Gar < Far
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A ssmple analysis

Why should it work?

Case of a simple linear system

Propagators are multiplication of v by F and G. The
parareal formula reads now:

k+1 k+1 k
unil = GATun+ + (FAT — GAT)un

If FA7 and Gar commute:

n+1

uphy = Fattug — D (7)) (Far — Gar)’Gay Puo
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Par allelisation

We merely need to transfer coordinates and velocity to
all processors

A new MPI group is defined, which allows compatibility
with k-point parallelisation

A high level routine (pstate) has been written, which call
gstate, changing the dtset parameters

We need a routine to transform r,,, v, IN 7,11, Uptq

This requires, two steps in the Verlet algorithm (quite
expensive)
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Coupling TF and ab initio

* Simulations of Helium

¢S

* Coarse integrator: Thomas Fermi (using a soft local
potential)

Cp(r)*® + vp(p) + viclp) + vps(r) = p
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Results

Convergence of Trajectory
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For k£ = 3, we are converged

The speedup is about 1.5 (9/3/2) on 9 processors. Still
guite modest.
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Results

For comparison, in Al, using a classical potential as a
predictor
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For k = 4, we are converged
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Conclusion

The use of Thomas-Fermi as a predictor has the
advantage of not requiring a classical potential

But the gains of the parareal method remain less
Important than using a classical potential as a predictor

Still other methods needed to achieve higher speed in
MD
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ey HANK YOU!
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