

Experiments with the Parareal algorithm

A. Roy,G. Zérah

Département de Physique Théorique et Appliquée, Commissariat à l'Energie Atomique, CEA-DAM Ile de France, B.P. 12, 91680 Bruyères le Châtel, France

Triying to use parallel machines for MD

- Rewrite the equation of motion symbolically as Rewrite the equation of motion symbolically as $\frac{du}{dt} = \Lambda(u)$, discretize it using a timestep ΔT . $\frac{u}{dt} = \Lambda(u)$, discretize it using a timestep $\Delta T.$
- introduce the propagator: $F_{\Delta T}(u_n)=u_{n+1}$ If u_n is our position in phase space after *n* steps, we
introduce the propagator: $F_{\Delta T}(u_n) = u_{n+1}$
 $F_{\Delta T}$ describes merely the way we go from one
- $\left(\begin{array}{c} 1 \ 1 \end{array}\right)$ $F_{\Delta T}$ describes merely the way we go from one configuration to the next.
- One could introduce, for any set v_n , One could introduce, for any set v_n ,
 $J = \sum_i (F_{\Delta T}(v_n) - v_{n+1})^2$, and try to

parallel. $-\sum (F_{\lambda} n(x))$.)
, $(v_{n+1})^2$, and try to minimize it in
route (parareel algorithm
anism. parallel.
- Here, we follow another route (parareel algorithm) more
akin to a feedback mechanism. akin to a feedback mechanism.

The parareal algorithm (in graphics)

The parareal algorithm (in equations)

- Use two force fields as a predictor-corrector.
First field:
	- First field:

$$
u_{n+1}^{0} = G_{\Delta T}(u_{n}^{0})
$$

$$
u_{0}^{0} = u_{0}
$$

rse propagator.

- $=u_0$ propaga p agator. $G_{\Delta T}(u_n^0)$ is the coarse propagator.
- $F_{\Delta T}(u_n^0)$ is the fine propagator.
-))
C
C |)
|
|| $G_{\Delta T}(u_n^0)$
- The error is: $\Delta_n^0 = F_{\Delta T}(u_n^0) G$
Naturally, $F_{\Delta T}(u_n^0)$ can be comp $\psi_n^0 = F_{\Delta T}$
 ψ_n^0 can $\binom{1}{2}$ $\binom{1}{2}$ Naturally, $F_{\Delta T}(u_n^0)$ can be computed in parallel
 $\binom{1}{2}$

The feedback process(Lions et al 2001)

 Propagate ^a second time using the coarse propagator corrected by Δ^0_n

$$
u_{n+1}^1 = G_{\Delta T}(u_n^1) + \Delta_{n+1}^0
$$

 $\ddot{\ }$ $\mu_{n+1}=G_{\Delta T}(u_{n}^1)+\Delta_{n+1}^0$
a be iterated, and this
ctories, denoted by u_{n}^k $\frac{1}{2}$ The process can be iterated, and this defines our successive trajectories, denoted by u_n^k successive trajectories, denoted by u_n^k

$$
u_{n+1}^{k+1} = G_{\Delta T}(u_n^{k+1}) + F_{\Delta T}(u_n^k) - G_{\Delta T}(u_n^k)
$$

$$
u_0^k = u_0
$$

since $F_{\Delta T}$ in // on *N* processors

- $\;\;$ Expensive $F_{\Delta T}$ in // on N processors
- $\begin{aligned} \epsilon_{\rm T} & = u_0 \ F_{\rm \Delta T} \text{ in } \ell \ \epsilon_{\rm conv} & \ll 1 \end{aligned}$ Expensive $F_{\Delta T}$ in // on N
Efficient if $k_{\rm conv} \ll N$ and Efficient if $k_{\rm conv} \ll N$ and $G_{\Delta T} \ll F_{\Delta T}$

A simple analysis

Why should it work?

- Case of a simple linear system
- Case of a simple linear system
Propagators are multiplication
Darareal formula reads now: Propagators are multiplication of u by F and G . The parareal formula reads now: parareal formula reads now:

$$
u_{n+1}^{k+1} = G_{\Delta T} u_n^{k+1} + (F_{\Delta T} - G_{\Delta T}) u_n^k
$$

and $G_{\Delta T}$ commute:

$$
n+1
$$

If $F_{\Delta T}$ and $G_{\Delta T}$ commute:

$$
{}^{a}_{n+1} \circ \Delta I \circ n \quad (1 \Delta I \circ \Delta I) \circ n
$$
\n
$$
{}^{f}F_{\Delta T} \text{ and } G_{\Delta T} \text{ commute:}
$$
\n
$$
u_{n+1}^{k+1} = F_{\Delta T}^{n+1} u_0 - \sum_{p=k+1}^{n+1} {n+1 \choose p} (F_{\Delta T} - G_{\Delta T})^p G_{\Delta T}^{n+1-p} u_0
$$

Parallelisation

- We merely need to transfer coordinates and velocity to
all processors
A new MPI group is defined, which allows compatibility all processors
	- A new MPI group is defined, which allows compatibility
with k-point parallelisation
A high level routine (pstate) has been written, which ca with k-point parallelisation
	- A high level routine (pstate) has been written, which call
gstate, changing the dtset parameters
We need a routine to transform \vec{r}_n , \vec{v}_n in \vec{r}_{n+1} , \vec{v}_{n+1} gstate, changing the dtset parameters
	- we need a routine to transform r_{∞}
	- We need a routine to transform \vec{r}_n, \vec{v}_n in $\vec{r}_{n+1}, \vec{v}_{n+1}$
This requires, two steps in the Verlet algorithm (quexpensive) This requires, two steps in the Verlet algorithm (quite
expensive) expensive)

Coupling TF and ab initio

- Simulations of Helium
	- Simulations of Helium
Coarse integrator: The
potential) Coarse integrator: Thomas Fermi (using a soft local
potential) potential)

$$
C\rho(r)^{2/3} + v_h(\rho) + v_{xc}(\rho) + v_{ps}(r) = \mu
$$

Results

- For $k=3$, we are converged
- For $k=3$
The spee
auite more The speedup is about 1.5 (9/3/2) on 9 processors. Still
quite modest. quite modest.

Results

For comparison, in AI, using a classical potential as a
predictor predictor

Conclusion

- But the gains of the parareal method remain less But the gains of the parareal method remain less
important than using a classical potential as a pro
Still other methods needed to achieve higher spe important than using ^a classical potential as ^a predictor
- Still other methods needed to achieve higher speed in
MD MD

