Source code for abipy.eph.varpeq

"""
This module contains objects for post-processing polaron calculations
using the results stored in the VARPEQ.nc file.

For a theoretical introduction see ...
"""
from __future__ import annotations

import dataclasses
import numpy as np
import pandas as pd
import abipy.core.abinit_units as abu

from monty.string import marquee
from monty.functools import lazy_property
#from monty.termcolor import cprint
from abipy.core.func1d import Function1D
from abipy.core.structure import Structure
from abipy.core.kpoints import kpoints_indices, kmesh_from_mpdivs, map_grid2ibz #, IrredZone
from abipy.core.mixins import AbinitNcFile, Has_Structure, Has_ElectronBands, NotebookWriter
from abipy.tools.typing import PathLike
from abipy.tools.plotting import (add_fig_kwargs, get_ax_fig_plt, get_axarray_fig_plt, set_axlims, set_visible,
    rotate_ticklabels, ax_append_title, set_ax_xylabels, linestyles, Marker, set_grid_legend)
from abipy.electrons.ebands import ElectronBands, RobotWithEbands
from abipy.dfpt.phonons import PhononBands
from abipy.dfpt.ddb import DdbFile
from abipy.tools.typing import Figure
from abipy.tools.numtools import BzRegularGridInterpolator, gaussian
from abipy.iotools import bxsf_write
from abipy.abio.robots import Robot
from abipy.eph.common import BaseEphReader


#TODO Finalize the implementation. Look at Pedro's implementation for GFR
#from abipy.electrons.effmass_analyzer import EffMassAnalyzer
#
#class FrohlichAnalyzer:
#
#    def __init__(self, gsr_kpath, ddb, verbose = 0, **anaddb_kwargs):
#        """
#        """
#        ebands_kpath = ElectronBands.as_ebands(gsr_kpath)
#        self.ddb = DdbFile.as_ddb(ddb)
#        self.verbose = verbose
#
#        r = self.ddb.anaget_epsinf_and_becs(verbose=verbose, return_input=True, **anaddb_kwargs)
#        self.epsinf, self.becs = r.epsinf, r.becs
#
#        self.diel_gen, diel_inp = self.ddb.anaget_dielectric_tensor_generator(verbose=verbose, return_input=True, **anaddb_kwargs)
#        self.eps0_tensor = self.diel_gen.tensor_at_frequency(0.0)
#
#        # Spherical average of eps_inf and eps_0 (real part only)
#        einf_savg, e0_savg = self.epsinf.trace() / 3, self.eps0_tensor.real.trace() / 3
#
#        self.kappa = 1 / (1/einf_savg - 1/e0_savg)
#
#        self.emana = EffMassAnalyzer(ebands_kpath)
#
#    def __str__(self) -> str:
#        return self.to_string()
#
#    def to_string(self, verbose: int = 0) -> str:
#        """String representation with verbosity level verbose"""
#        lines = []
#        app = lines.append
#
#        app("epsilon_infinity in Cartesian coordinates:")
#        app(str(self.epsinf))
#        app("BECS:")
#        app(str(self.becs))
#        app("eps0 tensor:")
#        app(str(self.eps0_tensor))
#        app(f"kappa = {self.kappa}")
#
#        return "\n".join(lines)
#
#    def analyze_band_edges(self):
#        self.emana.select_cbm()
#        self.emana.summarize()
#        self.emana.plot_emass()
#        self.emana.select_vbm()
#        self.emana.summarize()
#        self.emana.plot_emass()
#        #self.emana.select_band_edges()


[docs] @dataclasses.dataclass(kw_only=True) class Entry: name: str # Entry name latex: str # Latex label info: str # Description string utype: str # Unit type
#color: str # NB: All quantities are in atomic units! _ALL_ENTRIES = [ Entry(name="E_pol", latex=r'$E_{pol}$', info="Formation energy", utype="energy"), Entry(name="E_el", latex=r'$E_{el}$', info="Electronic part", utype="energy"), Entry(name="E_ph", latex=r'$E_{ph}$', info="Phonon part", utype="energy"), Entry(name="elph", latex=r'$E_{elph}$', info="e-ph term", utype="energy"), Entry(name="epsilon", latex=r"$\varepsilon$", info="Polaron eigenvalue", utype="energy"), Entry(name="gsr", latex=r"$|\nabla|$", info="||gradient||", utype="gradient"), ] # Convert to dictionary: name --> Entry _ALL_ENTRIES = {e.name: e for e in _ALL_ENTRIES}
[docs] class VarpeqFile(AbinitNcFile, Has_Structure, Has_ElectronBands, NotebookWriter): """ This file stores the results of a VARPEQ calculations: SCF cycle, A_nk, B_qnu coefficients It also provides methods to analyze and plot results. Usage example: .. code-block:: python from abipy.eph.varpeq import VarpeqFile with VarpeqFile("out_VARPEQ.nc") as varpeq: print(varpeq) varpeq.plot_scf_cycle() .. rubric:: Inheritance Diagram .. inheritance-diagram:: VarpeqFile """
[docs] @classmethod def from_file(cls, filepath: PathLike) -> VarpeqFile: """Initialize the object from a netcdf file.""" return cls(filepath)
def __init__(self, filepath: PathLike): super().__init__(filepath) self.r = VarpeqReader(filepath)
[docs] @lazy_property def ebands(self) -> ElectronBands: """|ElectronBands| object.""" return self.r.read_ebands()
@property def structure(self) -> Structure: """|Structure| object.""" return self.ebands.structure
[docs] def close(self) -> None: """Close the file.""" self.r.close()
[docs] @lazy_property def polaron_spin(self) -> list[Polaron]: """List of Polaron objects, one for each spin (if any).""" return [Polaron.from_varpeq(self, spin) for spin in range(self.r.nsppol)]
[docs] @lazy_property def params(self) -> dict: """dict with the convergence parameters, e.g. ``nbsum``.""" r = self.r ksampling = self.ebands.kpoints.ksampling ngkpt, shifts = ksampling.mpdivs, ksampling.shifts nkbz = np.prod(ngkpt) od = dict([ ("nkbz", nkbz), ("ngkpt", ngkpt), ("invsc_size", 1.0 / (nkbz * ((abu.Ang_Bohr * self.structure.lattice.volume) ** (1/3)))), ("frohl_ntheta", r.frohl_ntheta), ]) return od
def __str__(self) -> str: return self.to_string()
[docs] def to_string(self, verbose: int = 0) -> str: """String representation with verbosiy level ``verbose``.""" lines = []; app = lines.append app(marquee("File Info", mark="=")) app(self.filestat(as_string=True)) app("") app(self.structure.to_string(verbose=verbose, title="Structure")) app("") app(self.ebands.to_string(with_structure=False, verbose=verbose, title="Electronic Bands")) app("") app("VARPEQ parameters:") app(f"varpeq_pkind: {self.r.varpeq_pkind}") #app(f"gstore_cplex: {self.r.cplex}") #app(f"gstore_kzone: {self.r.kzone}") #app(f"gstore_kfilter: {self.r.kfilter}") #app(f"gstore_kptopt: {self.r.kptopt}") #app(f"gstore_qptopt: {self.r.qptopt}") for spin in range(self.nsppol): polaron = self.polaron_spin[spin] df = polaron.get_final_results_df() app("Last SCF iteration. Energies in eV units") app(str(df)) app("") return "\n".join(lines)
[docs] def yield_figs(self, **kwargs): # pragma: no cover """ This function *generates* a predefined list of matplotlib figures with minimal input from the user. """ for polaron in self.polaron_spin: yield polaron.plot_scf_cycle(show=False)
[docs] def write_notebook(self, nbpath=None) -> str: """ Write a jupyter_ notebook to ``nbpath``. If nbpath is None, a temporay file in the current working directory is created. Return path to the notebook. """ nbformat, nbv, nb = self.get_nbformat_nbv_nb(title=None) nb.cells.extend([ nbv.new_code_cell("varpeq = abilab.abiopen('%s')" % self.filepath), nbv.new_code_cell("print(varpeq)"), ]) return self._write_nb_nbpath(nb, nbpath)
[docs] @dataclasses.dataclass(kw_only=True) class Polaron: """ This object stores the polaron coefficients A_kn, B_qnu for a given spin and all the nstate polaron states. Provides methods to plot |A_nk|^2 or |B_qnu|^2 together with the band structures (fatbands-like plots). """ spin: int # Spin index. nstates: int # Number of polaronic states for this spin. nb: int # Number of bands in A_kn. nk: int # Number of k-points in A_kn, (including filtering if any). nq: int # Number of q-points in B_qnu (including filtering if any). bstart: int # First band starts at bstart. bstop: int # Last band (python convention) varpeq: VarpeqFile
[docs] @classmethod def from_varpeq(cls, varpeq: VarpeqFile, spin: int) -> Polaron: """ Build an istance from a VarpeqFile and the spin index. """ r = varpeq.r nstates, nk, nq, nb = r.nstates, r.nk_spin[spin], r.nq_spin[spin], r.nb_spin[spin] bstart, bstop = r.brange_spin[spin] data = locals() return cls(**{k: data[k] for k in [field.name for field in dataclasses.fields(Polaron)]})
@property def structure(self) -> Structure: """Crystalline structure.""" return self.varpeq.structure @property def ebands(self) -> ElectronBands: """Electron bands.""" return self.varpeq.ebands
[docs] @lazy_property def kpoints(self) -> np.ndarray: """Reduced coordinates of the k-points.""" return self.varpeq.r.read_value("kpts_spin")[self.spin, :self.nk]
[docs] @lazy_property def qpoints(self) -> np.ndarray: """Reduced coordinates of the q-points.""" return self.varpeq.r.read_value("qpts_spin")[self.spin, :self.nq]
[docs] @lazy_property def a_kn(self) -> np.ndarray: """A_{pnk} coefficients for this spin.""" return self.varpeq.r.read_value("a_spin", cmode="c")[self.spin, :self.nstates, :self.nk, :self.nb]
[docs] @lazy_property def b_qnu(self) -> np.ndarray: """B_{pqnu} coefficients for this spin.""" return self.varpeq.r.read_value("b_spin", cmode="c")[self.spin, :self.nstates, :self.nq]
[docs] @lazy_property def scf_df_state(self) -> list[pd.DataFrame]: """ List of dataframes with the SCF iterations. One dataframe for each polaron. NB: Energies are converted from Ha to eV. """ # int nstep2cv_spin(nsppol, nstates) ; # Number of steps to convergence at each state for each spin # double scf_hist_spin(nsppol, nstates, nstep, six) ; # SCF optimization history at each state for each spin # int cvflag_spin(nsppol, nstates) ; # 0 --> calculation is not converged # 1 --> calculation is converged spin = self.spin r = self.varpeq.r nstep2cv = r.read_variable("nstep2cv_spin")[spin] scf_hist = r.read_variable("scf_hist_spin")[spin] cvflag = r.read_variable("cvflag_spin")[spin] def ufact_k(k): """Convert energies to eV""" entry = _ALL_ENTRIES[k] if entry.utype == "energy": return abu.Ha_eV if entry.utype == "gradient": return 1.0 raise ValueError(f"Don't know how to convert {entry=}") # Build list of dataframes. df_list = [] for pstate in range(self.nstates): n = nstep2cv[pstate] dct = {k: scf_hist[pstate, :n, i] * ufact_k(k) for i, k in enumerate(_ALL_ENTRIES)} df = pd.DataFrame(dct) # Add metadata to the attrs dictionary df.attrs["converged"] = bool(cvflag[pstate]) df_list.append(df) return df_list
[docs] def get_final_results_df(self, with_params: bool = False) -> pd.DataFrame: """ Return daframe with the last iteration for all polaronic states. NB: Energies are in eV. """ row_list = [] for pstate in range(self.nstates): df = self.scf_df_state[pstate] row = {"pstate": pstate, "spin": self.spin} row.update(df.iloc[-1].to_dict()) row["converged"] = df.attrs["converged"] if with_params: row.update(self.varpeq.params) row_list.append(row) return pd.DataFrame(row_list)
def __str__(self) -> str: return self.to_string()
[docs] def to_string(self, verbose: int = 0) -> str: """ String representation with verbosiy level verbose. """ lines = []; app = lines.append app(marquee(f"Ank for spin: {self.spin}", mark="=")) app(f"nstates: {self.nstates}") app(f"nk: {self.nk}") app(f"nq: {self.nq}") app(f"nb: {self.nb}") app(f"bstart: {self.bstart}, bstop: {self.bstop}") ksampling = self.ebands.kpoints.ksampling ngkpt, shifts = ksampling.mpdivs, ksampling.shifts app(f"ksampling: {str(ksampling)}") ngqpt = self.varpeq.r.ngqpt app(f"q-mesh: {ngqpt}") if verbose: for pstate in range(self.nstates): app("For %d: 1/N_k sum_nk |A_nk|^2: %f" % (pstate, np.sum(np.abs(self.a_kn[pstate]) ** 2) / self.nk)) return "\n".join(lines)
[docs] @lazy_property def ngkpt_and_shifts(self) -> tuple: """ Return k-mesh divisions and shifts. """ ksampling = self.ebands.kpoints.ksampling ngkpt, shifts = ksampling.mpdivs, ksampling.shifts if ngkpt is None: raise ValueError("Non diagonal k-meshes are not supported!") if len(shifts) > 1: raise ValueError("Multiple k-shifts are not supported!") return ngkpt, shifts
[docs] def get_title(self, with_gaps: bool = True) -> str: """ Return string with title for matplotlib plots. """ varpeq = self.varpeq pre = "" if varpeq.ebands.nsppol == 1 else f"spin={self.spin}" if not with_gaps: return f"{pre}{varpeq.r.varpeq_pkind} polaron" else: gaps_string = varpeq.ebands.get_gaps_string() return f"{pre}{varpeq.r.varpeq_pkind} polaron, {gaps_string}"
[docs] def insert_a_inbox(self, fill_value=None) -> tuple: """ Return a_data, ngkpt, shifts where a_data is a (nstates, nb, nkx, nky, nkz)) array with A_{pnk} with p the polaron index. """ # Need to know the shape of the k-mesh. ngkpt, shifts = self.ngkpt_and_shifts k_indices = kpoints_indices(self.kpoints, ngkpt) nx, ny, nz = ngkpt shape = (self.nstates, self.nb, nx, ny, nz) a_data = np.empty(shape, dtype=complex) if fill_value is None else np.full(shape, fill_value, dtype=complex) for ip in range(self.nstates): for ib in range(self.nb): for a_cplx, k_inds in zip(self.a_kn[ip,:,ib], k_indices, strict=True): ix, iy, iz = k_inds a_data[ip, ib, ix, iy, iz] = a_cplx return a_data, ngkpt, shifts
[docs] def insert_b_inbox(self, fill_value=None) -> tuple: """ Return b_data, ngqpt, shifts where b_data is a (nstates, nb, nqx, nqy, nqz)) array with B_{pqnu} with p the polaron index. """ # Need to know the shape of the q-mesh (always Gamma-centered) ngqpt, shifts = self.varpeq.r.ngqpt, [0, 0, 0] q_indices = kpoints_indices(self.qpoints, ngqpt) natom3 = 3 * len(self.structure) nx, ny, nz = ngqpt shape = (self.nstates, natom3, nx, ny, nz) b_data = np.empty(shape, dtype=complex) if fill_value is None else np.full(shape, fill_value, dtype=complex) for ip in range(self.nstates): for nu in range(natom3): for b_cplx, q_inds in zip(self.b_qnu[ip,:,nu], q_indices, strict=True): ix, iy, iz = q_inds b_data[ip, nu, ix, iy, iz] = b_cplx return b_data, ngqpt, shifts
[docs] def get_a2_interpolator_state(self, interp_method) -> BzRegularGridInterpolator: """ Build and return an interpolator for |A_nk|^2 for each polaronic state. Args: interp_method: The method of interpolation. Supported are “linear”, “nearest”, “slinear”, “cubic”, “quintic” and “pchip”. """ a_data, ngkpt, shifts = self.insert_a_inbox() return [BzRegularGridInterpolator(self.structure, shifts, np.abs(a_data[pstate])**2, method=interp_method) for pstate in range(self.nstates)]
[docs] def get_b2_interpolator_state(self, interp_method) -> BzRegularGridInterpolator: """ Build and return an interpolator for |B_qnu|^2 for each polaronic state. Args: interp_method: The method of interpolation. Supported are “linear”, “nearest”, “slinear”, “cubic”, “quintic” and “pchip”. """ b_data, ngqpt, shifts = self.insert_b_inbox() return [BzRegularGridInterpolator(self.structure, shifts, np.abs(b_data[pstate])**2, method=interp_method) for pstate in range(self.nstates)]
[docs] def write_a2_bxsf(self, filepath: PathLike, fill_value: float = 0.0) -> None: r""" Export \sum_n |A_{pnk}|^2 in BXSF format suitable for visualization with xcrysden (use ``xcrysden --bxsf FILE``). Requires gamma-centered k-mesh. Args: filepath: BXSF filename. """ # NB: the kmesh must be gamma-centered, multiple shifts are not supported. # Init values with 0. This is relevant only if kfiltering is being used. a_data, ngkpt, shifts = self.insert_a_inbox(fill_value=fill_value) # Compute \sum_n A^2_{pnk}. a2_data = np.sum(np.abs(a_data)**2, axis=1) fermie = a2_data.mean() bxsf_write(filepath, self.structure, 1, self.nstates, ngkpt, a2_data, fermie, unit="Ha")
[docs] def write_b2_bxsf(self, filepath: PathLike, fill_value: float = 0.0) -> None: r""" Export \sum_{\nu} |B_{q\nu}|^2 in BXSF format suitable for visualization with xcrysden (use ``xcrysden --bxsf FILE``). Args: filepath: BXSF filename. """ # NB: qmesh must be gamma-centered, multiple shifts are not supported. # Init values with 0. This is relevant only if kfiltering is being used. b_data, ngqpt, shifts = self.insert_b_inbox(fill_value=fill_value) # Compute \sum_{\nu} B^2_{pq\nu}. b2_data = np.sum((np.abs(b_data)**2), axis=1) fermie = b2_data.mean() bxsf_write(filepath, self.structure, 1, self.nstates, ngqpt, b2_data, fermie, unit="Ha")
[docs] @add_fig_kwargs def plot_scf_cycle(self, ax_mat=None, fontsize=8, **kwargs) -> Figure: """ Plot the SCF cycle. Args: ax_max: |matplotlib-Axes| or None if a new figure should be created. fontsize: fontsize for legends and titles """ # Build grid of plots. nrows, ncols = self.nstates, 2 ax_mat, fig, plt = get_axarray_fig_plt(ax_mat, nrows=nrows, ncols=ncols, sharex=False, sharey=False, squeeze=False) for pstate in range(self.nstates): df = self.scf_df_state[pstate] niter = len(df) xs = np.arange(1, niter + 1) for iax, ax in enumerate(ax_mat[pstate]): # Create a twin Axes sharing the x-axis #grad_ax = ax grad_ax = ax.twinx() for ilab, (name, entry) in enumerate(_ALL_ENTRIES.items()): # Convert energies to Hartree. Keep gradient as it is. ys = df[name].to_numpy() _ax, energy_like = ax, True if entry.utype == "gradient": _ax, energy_like = grad_ax, False if iax == 0: # Plot values linear scale. _ax.plot(xs, ys, label=entry.latex) else: # Plot deltas in logscale. _ax.plot(xs, np.abs(ys - ys[-1]), label=entry.latex) _ax.set_yscale("log") _ax.set_xlim(1, niter) if energy_like: ylabel = "Energy (eV)" if iax == 0 else r"$|\Delta E|$ (eV)" else: ylabel = r"$|\nabla|$" if iax == 0 else r"$|\Delta |\nabla|$" set_grid_legend(_ax, fontsize, xlabel="Iteration") #, ylabel=ylabel) _ax.set_ylabel(ylabel) fig.suptitle(self.get_title(with_gaps=True)) fig.tight_layout() return fig
[docs] @add_fig_kwargs def plot_ank_with_ebands(self, ebands_kpath, ebands_kmesh=None, lpratio: int = 5, with_ibz_a2dos=True, method="gaussian", step: float = 0.05, width: float = 0.1, nksmall: int = 20, normalize: bool = False, with_title=True, interp_method="linear", ax_mat=None, ylims=None, scale=10, marker_color="gold", fontsize=12, **kwargs) -> Figure: """ Plot electron bands with markers whose size is proportional to |A_nk|^2. Args: ebands_kpath: ElectronBands or netcdf file providing an electronic band structure along a k-path. ebands_kmesh: ElectronBands or netcdf file providing an electronic band structure with k-points in the IBZ. lpratio: Ratio between the number of star functions and the number of ab-initio k-points. The default should be OK in many systems, larger values may be required for accurate derivatives. with_ibz_a2dos: True if A2_IBZ(E) should be computed. method: Integration scheme for electron DOS. step: Energy step (eV) of the linear mesh for DOS computation. width: Standard deviation (eV) of the gaussian for DOS computation. nksmall: Number of divisions to sample the smallest reciprocal lattice vector when computing electron DOS normalize: Rescale electron and A2(E) DOSes to plot them on the same scale. with_title: True to add title with chemical formula and gaps. interp_method: Interpolation method. ax_mat: Matrix |matplotlib-Axes| or None if a new figure should be created. ylims: Set the data limits for the y-axis. Accept tuple e.g. ``(left, right)`` or scalar e.g. ``left``. If left (right) is None, default values are used. scale: Scaling factor for |A_nk|^2. marker_color: Color for markers. fontsize: fontsize for legends and titles """ nrows, ncols = self.nstates, 2 gridspec_kw = {'width_ratios': [2, 1]} ax_mat, fig, plt = get_axarray_fig_plt(ax_mat, nrows=nrows, ncols=ncols, sharex=False, sharey=True, squeeze=False, gridspec_kw=gridspec_kw) # Get interpolators for A_nk a2_interp_state = self.get_a2_interpolator_state(interp_method) # DEBUG SECTION #ref_akn = np.abs(self.a_kn) ** 2 #for ik, kpoint in enumerate(self.kpoints): # interp = a2_interp_state[0].eval_kpoint(kpoint) # print("MAX (A2 ref - A2 interp) at qpoint", kpoint) # print((np.abs(ref_akn[ik] - interp)).max()) df = self.get_final_results_df() # Plot electron bands with markers. ebands_kpath = ElectronBands.as_ebands(ebands_kpath) ymin, ymax = +np.inf, -np.inf for pstate in range(self.nstates): x, y, s = [], [], [] for ik, kpoint in enumerate(ebands_kpath.kpoints): enes_n = ebands_kpath.eigens[self.spin, ik, self.bstart:self.bstop] for e, a2 in zip(enes_n, a2_interp_state[pstate].eval_kpoint(kpoint), strict=True): x.append(ik); y.append(e); s.append(scale * a2) ymin, ymax = min(ymin, e), max(ymax, e) points = Marker(x, y, s, color=marker_color, edgecolors='gray', alpha=0.8, label=r'$|A_{n\mathbf{k}}|^2$') ax = ax_mat[pstate, 0] ebands_kpath.plot(ax=ax, points=points, show=False) ax.legend(loc="best", shadow=True, fontsize=fontsize) # Add energy and convergence status with_info = True if with_info: data = (df[df["pstate"] == pstate]).to_dict(orient="list") e_pol_ev, converged = float(data["E_pol"][0]), bool(data["converged"][0]) ax.set_title(f"Formation energy: {e_pol_ev:.3f} eV, {converged=}" , fontsize=8) if pstate != self.nstates - 1: set_visible(ax, False, *["legend", "xlabel"]) vertices_names = [(k.frac_coords, k.name) for k in ebands_kpath.kpoints] if ebands_kmesh is None: edos_ngkpt = self.structure.calc_ngkpt(nksmall) print(f"Computing ebands_kmesh with star-function interpolation and {nksmall=} --> {edos_ngkpt=} ...") r = self.ebands.interpolate(lpratio=lpratio, vertices_names=vertices_names, kmesh=edos_ngkpt) ebands_kmesh = r.ebands_kmesh # Get electronic DOS from ebands_kmesh. edos_kws = dict(method=method, step=step, width=width) edos = ebands_kmesh.get_edos(**edos_kws) edos_mesh = edos.spin_dos[self.spin].mesh e0 = self.ebands.fermie ################## # Compute A_nk DOS ################## # NB: A_nk does not necessarily have the symmetry of the lattice so we have to loop over the full BZ. # Here we get the mapping BZ --> IBZ needed to obtain the KS eigenvalues e_nk from the IBZ for the DOS. kdata = ebands_kmesh.get_bz2ibz_bz_points() for pstate in range(self.nstates): # Compute A^2(E) DOS with A_nk in the full BZ. ank_dos = np.zeros(len(edos_mesh)) for ik_ibz, bz_kpoint in zip(kdata.bz2ibz, kdata.bz_kpoints, strict=True): enes_n = ebands_kmesh.eigens[self.spin, ik_ibz, self.bstart:self.bstop] a2_n = a2_interp_state[pstate].eval_kpoint(bz_kpoint) for band, (e, a2) in enumerate(zip(enes_n, a2_n, strict=True)): ank_dos += a2 * gaussian(edos_mesh, width, center=e-e0) ank_dos /= np.product(kdata.ngkpt) ank_dos = Function1D(edos_mesh, ank_dos) print(f"For {pstate=}, A^2(E) integrates to:", ank_dos.integral_value, " Ideally, it should be 1.") ax = ax_mat[pstate, 1] edos_opts = {"color": "black",} if self.spin == 0 else {"color": "red"} edos.plot_ax(ax, e0, spin=self.spin, normalize=normalize, exchange_xy=True, label="eDOS(E)", **edos_opts) ank_dos.plot_ax(ax, exchange_xy=True, normalize=normalize, label=r"$A^2$(E)", color=marker_color) # Computes A2(E) using only k-points in the IBZ. This is just for testing. # A2_IBZ(E) should be equal to A2(E) only if A_nk fullfills the lattice symmetries. See notes above. if with_ibz_a2dos: ank_dos = np.zeros(len(edos_mesh)) for ik_ibz, ibz_kpoint in enumerate(ebands_kmesh.kpoints): #print("ibz_kpoint:", ibz_kpoint) weight = ibz_kpoint.weight enes_n = ebands_kmesh.eigens[self.spin, ik_ibz, self.bstart:self.bstop] for e, a2 in zip(enes_n, a2_interp_state[pstate].eval_kpoint(ibz_kpoint), strict=True): ank_dos += weight * a2 * gaussian(edos_mesh, width, center=e-e0) ank_dos = Function1D(edos_mesh, ank_dos) print(f"For {pstate=}, A2_IBZ(E) integrates to:", ank_dos.integral_value, " Ideally, it should be 1.") ank_dos.plot_ax(ax, exchange_xy=True, normalize=normalize, label=r"$A^2_{IBZ}$(E)", color=marker_color, ls="--") set_grid_legend(ax, fontsize, xlabel="Arb. unit") if pstate != self.nstates - 1: set_visible(ax, False, *["legend", "xlabel"]) if ylims is None: # Automatic ylims. ymin -= 0.1 * abs(ymin) ymax += 0.1 * abs(ymax) ylims = [ymin - e0, ymax - e0] for ax in ax_mat.ravel(): set_axlims(ax, ylims, "y") if with_title: fig.suptitle(self.get_title(with_gaps=True)) return fig
[docs] @add_fig_kwargs def plot_bqnu_with_ddb(self, ddb, with_phdos=True, anaddb_kwargs=None, **kwargs) -> Figure: """ High-level interface to plot phonon energies with markers whose size is proportional to |B_qnu|^2. Similar to plot_bqnu_with_phbands but this function receives in input a DdbFile or a path to a ddb file and automates the computation of the phonon bands by invoking anaddb. Args: ddb: DdbFile or path to file. with_phdos: True if phonon DOS should be computed and plotter. anaddb_kwargs: Optional arguments passed to anaddb. kwargs: Optional arguments passed to plot_bqnu_with_phbands. """ ddb = DdbFile.as_ddb(ddb) anaddb_kwargs = {} if anaddb_kwargs is None else anaddb_kwargs with ddb.anaget_phbst_and_phdos_files(**anaddb_kwargs) as g: phbst_file, phdos_file = g[0], g[1] phbands_qpath = phbst_file.phbands return self.plot_bqnu_with_phbands(phbands_qpath, phdos_file=phdos_file if with_phdos else None, ddb=ddb, **kwargs)
[docs] @add_fig_kwargs def plot_bqnu_with_phbands(self, phbands_qpath, phdos_file=None, ddb=None, width=0.001, normalize: bool = True, verbose=0, anaddb_kwargs=None, with_title=True, interp_method="linear", ax_mat=None, scale=10, marker_color="gold", fontsize=12, **kwargs) -> Figure: """ Plot phonon energies with markers whose size is proportional to |B_qnu|^2. Args: phbands_qpath: PhononBands or nc file providing a phonon band structure. phdos_file: ddb: DdbFile or path to file. width: Standard deviation (eV) of the gaussian. normalize: Rescale the two DOS to plot them on the same scale. verbose: anaddb_kwargs: Optional arguments passed to anaddb. with_title: True to add title with chemical formula and gaps. interp_method: Interpolation method. ax_mat: List of |matplotlib-Axes| or None if a new figure should be created. scale: Scaling factor for |B_qnu|^2. marker_color: Color for markers. fontsize: fontsize for legends and titles. """ with_phdos = phdos_file is not None and ddb is not None nrows, ncols, gridspec_kw = self.nstates, 1, None if with_phdos: ncols, gridspec_kw = 2, {'width_ratios': [2, 1]} ax_mat, fig, plt = get_axarray_fig_plt(ax_mat, nrows=nrows, ncols=ncols, sharex=False, sharey=True, squeeze=False, gridspec_kw=gridspec_kw) phbands_qpath = PhononBands.as_phbands(phbands_qpath) # Get interpolators for B_qnu b2_interp_state = self.get_b2_interpolator_state(interp_method) # Plot phonon bands with markers. for pstate in range(self.nstates): x, y, s = [], [], [] for iq, qpoint in enumerate(phbands_qpath.qpoints): omegas_nu = phbands_qpath.phfreqs[iq,:] for w, b2 in zip(omegas_nu, b2_interp_state[pstate].eval_kpoint(qpoint), strict=True): x.append(iq); y.append(w); s.append(scale * b2) ax = ax_mat[pstate, 0] points = Marker(x, y, s, color=marker_color, edgecolors='gray', alpha=0.8, label=r'$|B_{\nu\mathbf{q}}|^2$') phbands_qpath.plot(ax=ax, points=points, show=False) ax.legend(loc="best", shadow=True, fontsize=fontsize) if pstate != self.nstates - 1: set_visible(ax, False, *["legend", "xlabel"]) if not with_phdos: # Return immediately. if with_title: fig.suptitle(self.get_title(with_gaps=True)) return fig #################### # Compute B_qnu DOS #################### # NB: B_qnu do not necessarily have the symmetry of the lattice so we have to loop over the full BZ. # The frequency mesh is in eV, values are in states/eV. # Use same q-mesh as phdos phdos = phdos_file.phdos phdos_ngqpt = np.diagonal(phdos_file.qptrlatt) phdos_shifts = [0.0, 0.0, 0.0] phdos_nqbz = np.product(phdos_ngqpt) phdos_mesh = phdos.mesh # Here we get the mapping BZ --> IBZ needed to obtain the ph frequencies omega_qnu from the IBZ for the DOS. #bz2ibz, bz_qpoints = map_grid2ibz(self.structure, ibz_qpoints, phdos_ngqpt, shifts, has_timrev=True) # Call anaddb to get phonons on the FULL ngqpt mesh. # The B_qnu do not necessarily have the symmetry of the lattice so we have to loop over the full BZ. anaddb_kwargs = {} if anaddb_kwargs is None else anaddb_kwargs bz_qpoints = kmesh_from_mpdivs(phdos_ngqpt, phdos_shifts) phbands_qmesh = ddb.anaget_phmodes_at_qpoints(qpoints=bz_qpoints, ifcflag=1, verbose=verbose, **anaddb_kwargs) if len(phbands_qmesh.qpoints) != np.product(phdos_ngqpt): raise RuntimeError(f"{len(phbands_qmesh.qpoints)=} != {np.product(phdos_ngqpt)=}") #with_ibz_b2dos = False for pstate in range(self.nstates): # Compute B2(E) by looping over the full BZ. bqnu_dos = np.zeros(len(phdos_mesh)) for iq_bz, qpoint in enumerate(phbands_qmesh.qpoints): freqs_nu = phbands_qmesh.phfreqs[iq_bz] for w, b2 in zip(freqs_nu, b2_interp_state[pstate].eval_kpoint(qpoint), strict=True): bqnu_dos += b2 * gaussian(phdos_mesh, width, center=w) # NB: all the q-weights in PHBST.nc are set to 1. bqnu_dos /= phdos_nqbz bqnu_dos = Function1D(phdos_mesh, bqnu_dos) ax = ax_mat[pstate, 1] phdos.plot_ax(ax, exchange_xy=True, normalize=normalize, label="phDOS(E)", color="black") bqnu_dos.plot_ax(ax, exchange_xy=True, normalize=normalize, label=r"$B^2$(E)", color=marker_color) set_grid_legend(ax, fontsize, xlabel="Arb. unit") # Get mapping BZ --> IBZ needed to obtain the KS eigenvalues e_nk from the IBZ for the DOS # Compute B2(E) using only q-points in the IBZ. This is just for testing. # B2_IBZ(E) should be equal to B2(E) only if B_qnu fullfill the lattice symmetries. See notes above. """ bqnu_dos = np.zeros(len(phdos_mesh)) for iq_ibz, qpoint in zip(bz2ibz, bz_qpoints): freqs_nu = phbands_qmesh.phfreqs[iq_ibz] for w, b2 in zip(freqs_nu, b2_interp_state[pstate].eval_kpoint(qpoint), strict=True) bqnu_dos += b2 gaussian(phdos_mesh, width, center=w) bqnu_dos /= np.product(phdos_ngqpt) """ if pstate != self.nstates - 1: set_visible(ax, False, *["legend", "xlabel"]) if with_title: fig.suptitle(self.get_title(with_gaps=True)) return fig
[docs] class VarpeqReader(BaseEphReader): """ Reads data from file and constructs objects. .. rubric:: Inheritance Diagram .. inheritance-diagram:: VarpeqReader """ def __init__(self, filepath: PathLike): super().__init__(filepath) # Netcdf Variables # int eph_task ; # int nkbz ; # int nqbz ; # int frohl_ntheta ; # double varpeq_tolgrs ; # double e_frohl ; # char varpeq_pkind(fnlen) ; # char varpeq_aseed(fnlen) ; # int ngkpt(three) ; # int gstore_ngqpt(three) ; # int nk_spin(nsppol) ; # int nq_spin(nsppol) ; # int nb_spin(nsppol) ; # int brange_spin(nsppol, two) ; # int cvflag_spin(nsppol, nstates) ; # int nstep2cv_spin(nsppol, nstates) ; # double scf_hist_spin(nsppol, nstates, nstep, six) ; # double kpts_spin(nsppol, max_nk, three) ; # double qpts_spin(nsppol, max_nq, three) ; # double cb_min_spin(nsppol) ; # double vb_max_spin(nsppol) ; # double a_spin(nsppol, nstates, max_nk, max_nb, two) ; # double b_spin(nsppol, nstates, max_nq, natom3, two) ; # Read important dimensions. self.nsppol = self.read_dimvalue("nsppol") self.nstates = self.read_dimvalue("nstates") self.nk_spin = self.read_value("nk_spin") self.nq_spin = self.read_value("nq_spin") #self.nkbz = self.read_dimvalue("nkbz") #self.nqbz = self.read_dimvalue("nqbz") self.varpeq_pkind = self.read_string("varpeq_pkind") #self.varpeq_aseed = self.read_string("varpeq_aseed") self.ngqpt = self.read_value("gstore_ngqpt") self.frohl_ntheta = self.read_value("frohl_ntheta") # Read important variables. #self.completed = self.read_value("gstore_completed") #self.done_spin_qbz = self.read_value("gstore_done_qbz_spin") #self.qptopt = self.read_value("gstore_qptopt") #self.kptopt = self.read_value("kptopt") #self.kzone = self.read_string("gstore_kzone") #self.qzone = self.read_string("gstore_qzone") #self.kfilter = self.read_string("gstore_kfilter") #self.gmode = self.read_string("gstore_gmode") # Note conversion Fortran --> C for the isym index. self.brange_spin = self.read_value("brange_spin") self.brange_spin[:,0] -= 1 self.nb_spin = self.brange_spin[:,1] - self.brange_spin[:,0]
#self.erange_spin = self.read_value("gstore_erange_spin") # Total number of k/q points for each spin after filtering (if any) #self.glob_spin_nq = self.read_value("gstore_glob_nq_spin") #self.glob_nk_spin = self.read_value("gstore_glob_nk_spin")
[docs] class VarpeqRobot(Robot, RobotWithEbands): """ This robot analyzes the results contained in multiple VARPEQ.nc files. Usage example: .. code-block:: python robot = VarpeqRobot.from_files([ "out1_VARPEQ.nc", "out2_VARPEQ.nc", ]) print(robot) df = robot.get_final_results_df() .. rubric:: Inheritance Diagram .. inheritance-diagram:: VarpeqRobot """ EXT = "VARPEQ" def __str__(self) -> str: return self.to_string()
[docs] def to_string(self, verbose=0) -> str: """String representation with verbosiy level ``verbose``.""" lines = []; app = lines.append df = self.get_final_results_df() lines.append(str(df)) return "\n".join(lines)
[docs] def get_final_results_df(self, spin=None, sortby=None, with_params: bool = True) -> pd.DataFrame: """ Return dataframe with the last iteration for all polaronic states. NB: Energies are in eV. Args: spin: Spin index, None if all spins should be included. sortby: Name to sort by. with_params: True if columns with convergence parameters should be added. """ df_list = [] for abifile in self.abifiles: if spin is None: for polaron in abifile.polaron_spin: df_list.append(polaron.get_final_results_df(with_params=with_params)) else: polaron = abifile.polaron_spin[spin] df_list.append(polaron.get_final_results_df(with_params=with_params)) df = pd.concat(df_list) if sortby and sortby in df: df = df.sort_values(sortby) return df
#@add_fig_kwargs #def plot_erange_conv(self, fontsize=12, **kwargs) -> Figure: # """ # Plot the convergence of the results wrt to the value of erange. # Args: # colormap: Color map. Have a look at the colormaps here and decide which one you like: # fontsize: fontsize for legends and titles # """ # fig = self.plot_convergence(self, item: Union[str, Callable], # sortby=None, hue=None, abs_conv=None, # ax=None, fontsize=8, **kwargs) # return fig
[docs] @add_fig_kwargs def plot_kconv(self, colormap="jet", fontsize=12, **kwargs) -> Figure: """ Plot the convergence of the results wrt to the k-point sampling. Args: colormap: matplotlib color map. fontsize: fontsize for legends and titles """ nsppol = self.getattr_alleq("nsppol") # Build grid of plots. nrows, ncols = len(_ALL_ENTRIES), nsppol ax_mat, fig, plt = get_axarray_fig_plt(None, nrows=nrows, ncols=ncols, sharex=True, sharey=False, squeeze=False) cmap = plt.get_cmap(colormap) for spin in range(nsppol): df = self.get_final_results_df(spin=spin, sortby=None) xs = df["invsc_size"] xvals = np.linspace(0.0, 1.1 * xs.max(), 100) for ix, ylabel in enumerate(_ALL_ENTRIES): ax = ax_mat[ix, spin] ys = df[ylabel] # Plot ab-initio points. ax.scatter(xs, ys, color="red", marker="o") # Plot fit using the first nn points. for nn in range(1, len(xs)): color = cmap((nn - 1) / len(xs)) p = np.poly1d(np.polyfit(xs[:nn+1], ys[:nn+1], deg=1)) ax.plot(xvals, p(xvals), color=color, ls="--") xlabel = "Inverse supercell size (Bohr$^-1$)" if ix == len(_ALL_ENTRIES) - 1 else None set_grid_legend(ax, fontsize, xlabel=xlabel, ylabel=f"{ylabel} (eV)", legend=False) ax.tick_params(axis='x', color='black', labelsize='20', pad=5, length=5, width=2) return fig
[docs] def yield_figs(self, **kwargs): # pragma: no cover """ This function *generates* a predefined list of matplotlib figures with minimal input from the user. Used in abiview.py to get a quick look at the results. """ #yield self.plot_scf_cycle(show=False) yield self.plot_kconv()
[docs] def write_notebook(self, nbpath=None) -> str: """ Write a jupyter_ notebook to ``nbpath``. If nbpath is None, a temporary file in the current working directory is created. Return path to the notebook. """ nbformat, nbv, nb = self.get_nbformat_nbv_nb(title=None) args = [(l, f.filepath) for l, f in self.items()] nb.cells.extend([ nbv.new_code_cell("robot = abilab.VarpeqRobot(*%s)\nrobot.trim_paths()\nrobot" % str(args)), #nbv.new_code_cell("ebands_plotter = robot.get_ebands_plotter()"), ]) return self._write_nb_nbpath(nb, nbpath)