.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "flow_gallery/run_gwr_g0w0.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_flow_gallery_run_gwr_g0w0.py: GWR flow with convergence studies ================================= This script shows how to compute the G0W0 corrections in silicon. More specifically, we build a flow to analyze the convergence of the QP corrections wrt to the number of bands in the self-energy. More complicated convergence studies can be implemented on the basis of this example. .. GENERATED FROM PYTHON SOURCE LINES 11-98 .. image-sg:: /flow_gallery/images/sphx_glr_run_gwr_g0w0_001.png :alt: run gwr g0w0 :srcset: /flow_gallery/images/sphx_glr_run_gwr_g0w0_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Downloading repository from: https://github.com/PseudoDojo/ONCVPSP-PBE-PDv0.4/archive/refs/heads/master.zip ... Installing ONCVPSP-PBE-SR-PDv0.4 in: /home/runner/.abinit/pseudos/ONCVPSP-PBE-SR-PDv0.4 0.00iB [00:00, ?iB/s] 827kiB [00:00, 7.41MiB/s] 1.58MiB [00:00, 3.98MiB/s] 2.89MiB [00:00, 6.67MiB/s] 3.81MiB [00:00, 5.61MiB/s] 5.32MiB [00:00, 7.04MiB/s] 6.18MiB [00:00, 7.00MiB/s] 7.00MiB [00:01, 7.18MiB/s] 7.78MiB [00:01, 7.11MiB/s] 8.54MiB [00:01, 7.12MiB/s] 9.28MiB [00:01, 5.87MiB/s] 10.0MiB [00:01, 5.97MiB/s] 11.2MiB [00:01, 7.27MiB/s] 12.1MiB [00:01, 6.87MiB/s] 12.9MiB [00:02, 6.07MiB/s] 13.8MiB [00:02, 6.27MiB/s] 14.5MiB [00:02, 5.86MiB/s] 15.8MiB [00:02, 7.28MiB/s] 16.6MiB [00:02, 7.45MiB/s] 17.4MiB [00:02, 7.01MiB/s] 18.2MiB [00:02, 6.24MiB/s] 19.3MiB [00:02, 7.30MiB/s] 20.1MiB [00:03, 7.04MiB/s] 20.9MiB [00:03, 7.26MiB/s] 21.7MiB [00:03, 7.11MiB/s] 22.5MiB [00:03, 6.78MiB/s] 23.2MiB [00:03, 6.79MiB/s] 24.1MiB [00:03, 6.96MiB/s] 24.9MiB [00:03, 6.97MiB/s] 25.7MiB [00:03, 7.10MiB/s] 26.5MiB [00:03, 6.93MiB/s] 27.2MiB [00:04, 6.65MiB/s] 27.9MiB [00:04, 6.53MiB/s] 28.6MiB [00:04, 6.60MiB/s] 29.4MiB [00:04, 6.90MiB/s] 30.2MiB [00:04, 5.99MiB/s] 30.8MiB [00:04, 6.06MiB/s] 31.6MiB [00:04, 6.10MiB/s] 32.3MiB [00:04, 6.18MiB/s] 33.0MiB [00:05, 6.20MiB/s] 34.1MiB [00:05, 7.19MiB/s] 34.9MiB [00:05, 7.14MiB/s] 35.6MiB [00:05, 6.74MiB/s] 36.5MiB [00:05, 6.99MiB/s] 37.3MiB [00:05, 7.00MiB/s] 38.1MiB [00:05, 7.11MiB/s] 38.8MiB [00:05, 7.15MiB/s] 39.6MiB [00:05, 6.80MiB/s] 40.3MiB [00:06, 6.77MiB/s] 41.0MiB [00:06, 6.10MiB/s] 41.7MiB [00:06, 5.07MiB/s] 42.9MiB [00:06, 5.58MiB/s] 44.2MiB [00:06, 6.32MiB/s] 45.0MiB [00:06, 6.46MiB/s] 46.4MiB [00:06, 7.99MiB/s] 47.3MiB [00:07, 7.55MiB/s] 48.1MiB [00:07, 7.28MiB/s] 48.9MiB [00:07, 6.93MiB/s] 49.7MiB [00:07, 7.15MiB/s] 50.4MiB [00:07, 6.15MiB/s] 51.3MiB [00:07, 5.93MiB/s] 51.9MiB [00:07, 6.04MiB/s] 52.8MiB [00:07, 6.28MiB/s] 54.0MiB [00:08, 7.72MiB/s] 54.8MiB [00:08, 7.54MiB/s] 55.6MiB [00:08, 7.31MiB/s] 56.4MiB [00:08, 7.25MiB/s] 57.2MiB [00:08, 6.97MiB/s] 57.9MiB [00:08, 6.82MiB/s] 58.7MiB [00:08, 6.90MiB/s] 59.4MiB [00:08, 5.95MiB/s] 60.4MiB [00:09, 6.77MiB/s] 61.1MiB [00:09, 6.87MiB/s] 61.8MiB [00:09, 6.10MiB/s] 62.7MiB [00:09, 5.83MiB/s] 63.7MiB [00:09, 6.06MiB/s] 64.7MiB [00:09, 6.90MiB/s] 65.5MiB [00:09, 6.68MiB/s] 66.4MiB [00:10, 5.94MiB/s] 67.4MiB [00:10, 6.27MiB/s] 68.3MiB [00:10, 6.27MiB/s] 69.3MiB [00:10, 5.07MiB/s] 70.5MiB [00:10, 5.93MiB/s] 71.7MiB [00:10, 6.70MiB/s] 72.9MiB [00:11, 7.26MiB/s] 73.8MiB [00:11, 7.31MiB/s] 74.7MiB [00:11, 6.74MiB/s] 75.8MiB [00:11, 6.77MiB/s] 77.0MiB [00:11, 7.38MiB/s] 78.0MiB [00:11, 7.79MiB/s] 78.8MiB [00:11, 7.26MiB/s] 79.6MiB [00:12, 4.61MiB/s] 80.5MiB [00:12, 5.03MiB/s] 81.8MiB [00:12, 6.09MiB/s] 82.5MiB [00:12, 5.04MiB/s] 83.8MiB [00:12, 6.16MiB/s] 85.1MiB [00:12, 6.98MiB/s] 86.2MiB [00:13, 7.49MiB/s] 87.1MiB [00:13, 7.13MiB/s] 88.1MiB [00:13, 7.19MiB/s] 89.4MiB [00:13, 7.84MiB/s] 90.3MiB [00:13, 8.06MiB/s] 91.1MiB [00:13, 6.80MiB/s] 91.9MiB [00:13, 6.46MiB/s] 93.1MiB [00:14, 7.63MiB/s] 93.9MiB [00:14, 7.49MiB/s] 94.7MiB [00:14, 6.91MiB/s] 95.5MiB [00:14, 6.58MiB/s] 95.5MiB [00:14, 6.63MiB/s] Validating md5 checksums of ONCVPSP-PBE-SR-PDv0.4... Checksum test: OK Installation completed successfully in 16.25 [s] | .. code-block:: Python import os import sys import abipy.data as data import abipy.abilab as abilab from abipy import flowtk from abipy.flowtk.gwr_works import DirectDiagoWork, GWRSigmaConvWork def build_flow(options): # Working directory (default is the name of the script with '.py' removed and "run_" replaced by "flow_") if not options.workdir: options.workdir = os.path.basename(sys.argv[0]).replace(".py", "").replace("run_","flow_") # IMPORTANT: Note stringent table to have semi-core states. from abipy.flowtk.psrepos import get_oncvpsp_pseudos pseudos = get_oncvpsp_pseudos(xc_name="PBE", version="0.4", relativity_type="SR", accuracy="stringent") scf_input = abilab.AbinitInput(structure=data.cif_file("si.cif"), pseudos=pseudos) num_ele = scf_input.num_valence_electrons # Global variables. scf_input.set_vars( ecut=6, nband=num_ele // 2, tolvrs=1e-8, paral_kgb=1, ) # IMPORTANT: k-grid for GWR must be Gamma-centered. scf_input.set_kmesh(ngkpt=[2, 2, 2], shiftk=[0.0, 0.0, 0.0]) flow = flowtk.Flow(workdir=options.workdir) # GS-SCF run to get the DEN, followed by direct diago to obtain green_nband bands. green_nband = -1 # -1 this means full diago diago_work = DirectDiagoWork.from_scf_input(scf_input, green_nband) flow.register_work(diago_work) # Build template for GWR. gwr_template = scf_input.make_gwr_qprange_input(gwr_ntau=6, nband=8, ecuteps=4, ecutwfn=2) # Two possibilities: # 1) To change the value of one variable, use: varname_values = ("nband", [8, 12, 14]) # 2) To take the Cartesian product of two or more variables use e.g.: # #varname_values = [ # ("nband", [50, 100]), # ("ecuteps", [2, 4]), #] # Can also use strings with path to files for den_node and wfk_node # so that one does not need to recompute these files. gwr_work = GWRSigmaConvWork.from_varname_values( varname_values, gwr_template, den_node=diago_work.scf_task, wfk_node=diago_work.diago_task, ) flow.register_work(gwr_work) return flow # This block generates the thumbnails in the AbiPy gallery. # You can safely REMOVE this part if you are using this script for production runs. if os.getenv("READTHEDOCS", False): __name__ = None import tempfile options = flowtk.build_flow_main_parser().parse_args(["-w", tempfile.mkdtemp()]) build_flow(options).graphviz_imshow() @flowtk.flow_main def main(options): return build_flow(options) if __name__ == "__main__": sys.exit(main()) .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 16.605 seconds) .. _sphx_glr_download_flow_gallery_run_gwr_g0w0.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: run_gwr_g0w0.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: run_gwr_g0w0.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: run_gwr_g0w0.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_