"""
Classes to compute vibrational properties with phonopy and ML potentials.
"""
from __future__ import annotations
import os
import json
import numpy as np
import abipy.core.abinit_units as abu
from monty.dev import requires
from monty.string import list_strings, marquee
from monty.termcolor import cprint
from ase.calculators.calculator import Calculator
from ase.atoms import Atoms
from ase.filters import FrechetCellFilter # ExpCellFilter,
from pymatgen.io.phonopy import get_phonopy_structure
from abipy.core.structure import Structure
from abipy.dfpt.ddb import DdbFile
from abipy.dfpt.phonons import PhononBands, PhononBandsPlotter
from abipy.tools.context_managers import Timer
from abipy.ml.aseml import RX_MODE, CalcBuilder, AseResults, MlBase, relax_atoms, dataframe_from_results_list
try:
import phonopy
from phonopy import Phonopy
from phonopy.structure.atoms import PhonopyAtoms
from phonopy import PhonopyQHA
except ImportError:
phonopy = None
Phonopy = None
[docs]
def cprint_traceback(color="red") -> None:
"""Print traceback."""
import traceback
from monty.termcolor import cprint
cprint(traceback.format_exc(), color=color)
[docs]
@requires(phonopy, "phonopy should be installed to calculate phonons")
def get_phonopy(structure: Structure,
supercell_matrix,
calculator: Calculator,
distance=0.01,
primitive_matrix=None,
remove_drift=True,
) -> Phonopy:
"""
Build and return a Phonopy instance.
Args:
structure: Structure object.
supercell_matrix: Supercell matrix.
calculator: ASE calculator to be attached to the atoms.
distance: Distance of finite displacements in Angstrom.
primitive_matrix
remove_drift: True if the drift in the forces should be removed.
Based on a similar implementation available at: https://github.com/modl-uclouvain/randomcarbon/blob/main/randomcarbon/run/phonon.py
"""
unit_cell = Structure.as_structure(structure).get_phonopy_atoms()
phonon = Phonopy(unit_cell, supercell_matrix=supercell_matrix, primitive_matrix=primitive_matrix)
phonon.generate_displacements(distance=distance)
forces_list = []
nsc = len(phonon.supercells_with_displacements)
print(f"Calculating forces for {nsc} supercell configurations ...")
for i, sc in enumerate(phonon.supercells_with_displacements):
a = Atoms(symbols=sc.symbols,
positions=sc.positions,
masses=sc.masses,
cell=sc.cell,
pbc=True,
calculator=calculator)
forces = a.get_forces()
if remove_drift:
drift_force = forces.sum(axis=0)
for force in forces:
force -= drift_force / forces.shape[0]
forces_list.append(forces)
print(f"\t{i+1} of {nsc} completed ...")
phonon.produce_force_constants(forces_list)
return phonon
[docs]
class MlPhonopyWithDDB(MlBase):
"""
Compute phonons with phonopy and a ML potential starting from a DDB file and compare the results.
"""
def __init__(self,
ddb_filepath,
distance,
asr,
dipdip,
line_density,
qppa,
relax_mode,
fmax,
pressure,
steps,
optimizer,
nn_names,
verbose,
workdir,
prefix=None,
supercell=None
):
"""
Args:
ddb_filepath: DDB filepath.
distance: Distance of finite displacement in Angstrom.
asr: Enforce acoustic sum-rule. Abinit variable.
dipdip: Treatment of dipole-dipole term. Abinit variable.
line_density: Defines the density of k-points per reciprocal atom to plot the phonon dispersion.
qppa: Defines the homogeneous q-mesh used for the DOS in units of q-points per atom.
relax_mode: "ions" to relax ions only, "cell" for ions + cell, "no" for no relaxation.
fmax: tolerance for relaxation convergence. Here fmax is a sum of force and stress forces.
pressure: Target pressure.
steps: max number of steps for relaxation.
optimizer: name of the ASE optimizer to use for relaxation.
nn_names: String or list of strings defining the NN potential. See also CalcBuilder.
verbose: Verbosity level.
workdir: Working directory, None to generate temporary directory automatically.
prefix: Prefix for workdir
supercell: with supercell dimensions. None to use the supercell from the DDB file.
"""
super().__init__(workdir, prefix)
self.distance = float(distance)
self.asr = asr
self.dipdip = dipdip
self.relax_mode = relax_mode
RX_MODE.validate(self.relax_mode)
self.fmax = fmax
self.pressure = pressure
self.steps = steps
self.optimizer = optimizer
self.nn_names = list_strings(nn_names)
self.verbose = verbose
self.supercell = supercell
self.line_density = line_density
self.qppa = qppa
self.ddb_filepath = ddb_filepath
with DdbFile(self.ddb_filepath) as ddb:
self.initial_atoms = ddb.structure.to_ase_atoms()
if self.supercell is None:
# Take supercell from the q-mesh used in the DDB.
self.supercell = np.eye(3) * ddb.guessed_ngqpt
if self.supercell is None:
raise ValueError("Supercell must be specified in input!")
self.supercell = np.array(self.supercell)
self.abi_nac_params = {}
[docs]
def to_string(self, verbose=0):
"""String representation with verbosity level `verbose`."""
supercell = self.supercell.tolist()
s = f"""\
{self.__class__.__name__} parameters:
ddb_path = {self.ddb_filepath}
supercell = {supercell}
distance = {self.distance}
qppa = {self.qppa}
asr = {self.asr}
dipdip = {self.dipdip}
line_density = {self.line_density}
relax_mode = {self.relax_mode}
fmax = {self.fmax}
steps = {self.steps}
optimizer = {self.optimizer}
pressure = {self.pressure}
nn_names = {self.nn_names}
workdir = {self.workdir}
verbose = {self.verbose}
"""
return s
[docs]
def run(self) -> None:
"""
Run MlPhonopyWithDDB.
"""
# Run anaddb computation and save results in self.
with DdbFile(self.ddb_filepath) as ddb, Timer(header="Starting anaddb ph-bands computation...") as timer:
if ddb.has_lo_to_data and self.dipdip != 0:
# according to the phonopy website 14.399652 is not the coefficient for abinit
# probably it relies on the other conventions in the output.
out = ddb.anaget_epsinf_and_becs()
self.abi_nac_params = {"born": out.becs.values, "dielectric": out.epsinf, "factor": 14.399652}
# ab-initio phonons from the DDB.
with ddb.anaget_phbst_and_phdos_files(
qppa=self.qppa, line_density=self.line_density,
asr=self.asr, dipdip=self.dipdip, verbose=self.verbose) as g:
phbst_file, phdos_file = g[0], g[1]
self.abi_phbands = phbst_file.phbands
# The q-points passed to phonopy.
self.py_qpoints = [[qpt.frac_coords for qpt in self.abi_phbands.qpoints]]
data = {}
data["ddb"] = self.abi_phbands.get_phfreqs_stats_dict()
d_nn = data["nn_names"] = {}
for nn_name in self.nn_names:
try:
d = self._run_nn_name(nn_name)
d_nn[nn_name] = d
d_nn[nn_name]["exception"] = None
except Exception as exc:
cprint_traceback()
d_nn[nn_name] = {}
d_nn[nn_name]["exception"] = str(exc)
self.write_json("data.json", data, info="JSON file with final results.")
self._finalize()
def _run_nn_name(self, nn_name: str) -> None:
"""
Run calculation for a single NN potential.
"""
workdir = self.workdir
calculator = CalcBuilder(nn_name).get_calculator()
atoms = self.initial_atoms.copy()
atoms.calc = calculator
natom = len(atoms)
if self.relax_mode == RX_MODE.cell:
raise RuntimeError("One should not relax the cell when comparing ML phonons with a DDB file!")
if self.relax_mode != RX_MODE.no:
print(f"Relaxing input DDB atoms with relax mode: {self.relax_mode}.")
relax_kws = dict(optimizer=self.optimizer,
relax_mode=self.relax_mode,
fmax=self.fmax,
pressure=self.pressure,
steps=self.steps,
traj_path=self.get_path(f"{nn_name}_relax.traj", "ASE relax trajectory"),
verbose=self.verbose,
)
relax = relax_atoms(atoms, **relax_kws)
relax.summarize(["DDB_initial", "DDB_relaxed"])
#print(relax)
# Call phonopy to compute phonons with finite difference and ML potential.
# Include non-analytical term if dipoles are available in the DDB file.
with Timer(header=f"Calling get_phonopy with {nn_name=}", footer=""):
phonon = get_phonopy(atoms, self.supercell, calculator,
distance=self.distance, primitive_matrix=None, remove_drift=True)
if self.abi_nac_params:
print("Including dipolar term in phonopy using BECS and eps_inf taken from DDB.")
phonon.nac_params = self.abi_nac_params
# Save phonopy object in Yaml format.
phonon.save(filename=workdir / f"phonopy_params.yaml", settings={'force_constants': True})
with Timer(header="Starting phonopy ph-band computation...", footer=""):
phonon.run_band_structure(self.py_qpoints, with_eigenvectors=True)
plt = phonon.plot_band_structure()
plt.savefig(workdir / f"phonopy_{nn_name}_phbands{self.fig_ext}")
plt.close()
bands_dict = phonon.get_band_structure_dict()
nqpt = 0
py_phfreqs, py_displ_cart = [], []
for q_list, w_list, eig_list in zip(bands_dict['qpoints'], bands_dict['frequencies'], bands_dict['eigenvectors'], strict=True):
nqpt += len(q_list)
py_phfreqs.extend(w_list)
py_displ_cart.extend(eig_list)
py_phfreqs = np.reshape(py_phfreqs, (nqpt, 3*natom)) / abu.eV_to_THz
py_displ_cart = np.reshape(py_displ_cart, (nqpt, 3*natom, 3*natom))
# Build abipy phonon bands from phonopy results.
py_phbands = PhononBands(self.abi_phbands.structure, self.abi_phbands.qpoints, py_phfreqs,
# FIXME: Use phononopy displacement
self.abi_phbands.phdispl_cart,
non_anal_ph=None,
amu=self.abi_phbands.amu,
epsinf=self.abi_phbands.epsinf,
zcart=self.abi_phbands.zcart,
)
# TODO
#py_phbands = PhononBands.from_phonopy_phonon(phonon)
# Compute diff stats.
mabs_wdiff_ev = np.abs(py_phbands.phfreqs - self.abi_phbands.phfreqs).mean()
ph_plotter = PhononBandsPlotter(key_phbands=[
(f"phonopy with {nn_name}", py_phbands),
("ABINIT DDB", self.abi_phbands),
])
mae_str = f"MAE {1000 * mabs_wdiff_ev:.3f} meV"
print(mae_str)
latex_formula = self.abi_phbands.structure.latex_formula
ph_plotter.combiplot(title=f"{latex_formula}: {mae_str}", units="meV",
savefig=str(workdir / f"combiplot_{nn_name}.pdf"), show=False)
data = dict(
mabs_wdiff_ev=mabs_wdiff_ev,
**py_phbands.get_phfreqs_stats_dict()
)
# Compute phonon DOS and generate file with figure.
#phonon.auto_total_dos(plot=True)
#plt.savefig(workdir / f"phonopy_{nn_name}_phdos{self.fig_ext}")
#plt.close()
# Compute site-project phonon DOS and generate file with figure.
#phonon.auto_projected_dos(plot=True)
#plt.savefig(workdir / f"phonopy_{nn_name}_pjdos{self.fig_ext}")
#plt.close()
#phonon.run_thermal_properties(t_step=10, t_max=1000, t_min=0)
#phonon.write_yaml_thermal_properties(filename=workdir / f"phonopy_{nn_name}_thermal_properties.yaml")
return data
[docs]
class MlPhonopy(MlBase):
"""
Compute phonons with phonopy and a ML potential.
"""
def __init__(self,
structure,
supercell,
distance,
line_density,
qppa,
relax_mode,
fmax,
pressure,
steps,
optimizer,
nn_names,
verbose,
workdir,
prefix=None
):
"""
Args:
structure: Structure object
supercell: Supercell dimensions.
distance: Distance of finite displacements in Angstrom.
line_density: Defines the a density of k-points per reciprocal atom to plot the phonon dispersion.
qppa: Defines the homogeneous q-mesh used for the DOS in units of q-points per atom.
relax_mode: "ions" to relax ions only, "cell" for ions + cell, "no" for no relaxation.
fmax: tolerance for relaxation convergence. Here fmax is a sum of force and stress forces.
pressure: Target pressure.
steps: max number of steps for relaxation.
optimizer: name of the ASE optimizer to use for relaxation.
nn_names: String or list of strings defining the NN potential. See also CalcBuilder.
verbose: Verbosity level.
workdir: Working directory, None to generate temporary directory automatically.
prefix: Prefix for workdir.
"""
super().__init__(workdir, prefix)
self.initial_atoms = structure.to_ase_atoms()
self.distance = float(distance)
self.relax_mode = relax_mode
RX_MODE.validate(self.relax_mode)
self.fmax = fmax
self.pressure = pressure
self.steps = steps
self.optimizer = optimizer
self.nn_names = list_strings(nn_names)
self.verbose = verbose
self.supercell = np.array(supercell)
self.line_density = line_density
self.qppa = qppa
[docs]
def to_string(self, verbose=0):
"""String representation with verbosity level `verbose`."""
supercell = self.supercell.tolist()
s = f"""\
{self.__class__.__name__} parameters:
supercell = {supercell}
distance = {self.distance}
qppa = {self.qppa}
line_density = {self.line_density}
relax_mode = {self.relax_mode}
fmax = {self.fmax}
steps = {self.steps}
optimizer = {self.optimizer}
pressure = {self.pressure}
nn_names = {self.nn_names}
workdir = {self.workdir}
verbose = {self.verbose}
"""
return s
[docs]
def run(self) -> None:
"""Run calculation."""
data = {}
d_nn = data["nn_names"] = {}
for nn_name in self.nn_names:
try:
d = self._run_nn_name(nn_name)
d_nn[nn_name] = d
d_nn[nn_name]["exception"] = None
except Exception as exc:
cprint_traceback()
d_nn[nn_name] = {}
d_nn[nn_name]["exception"] = str(exc)
self.write_json("data.json", data, info="JSON file with final results.")
self._finalize()
def _run_nn_name(self, nn_name: str) -> dict:
"""
Run calculation for a single NN potential.
"""
workdir = self.workdir
calculator = CalcBuilder(nn_name).get_calculator()
atoms = self.initial_atoms.copy()
atoms.calc = calculator
if self.relax_mode != RX_MODE.no:
print(f"Relaxing input atoms with relax mode: {self.relax_mode}.")
relax_kws = dict(optimizer=self.optimizer,
relax_mode=self.relax_mode,
fmax=self.fmax,
pressure=self.pressure,
steps=self.steps,
traj_path=self.get_path(f"{nn_name}_relax.traj", "ASE relax trajectory"),
verbose=self.verbose,
)
relax = relax_atoms(atoms, **relax_kws)
relax.summarize(["initial", "relaxed"])
print(relax)
# Call phonopy to compute phonons with finite difference and ML potential.
# Include non-analytical term if dipoles are available in the DDB file.
with Timer(header=f"Calling get_phonopy with {nn_name=}", footer=""):
phonon = get_phonopy(atoms, self.supercell, calculator,
distance=self.distance, primitive_matrix=None, remove_drift=True)
plt = phonon.auto_band_structure(
npoints=101,
with_eigenvectors=False,
with_group_velocities=False,
plot=True,
write_yaml=True,
filename=workdir / f"{nn_name}_band.yml",
)
plt.savefig(workdir / f"phonopy_{nn_name}_phbands{self.fig_ext}")
plt.close()
# Save phonopy object in Yaml format.
phonon.save(filename=workdir / f"phonopy_params.yaml", settings={'force_constants': True})
# Compute phonon DOS and generate file with figure.
phonon.auto_total_dos(plot=True)
plt.savefig(workdir / f"phonopy_{nn_name}_phdos{self.fig_ext}")
plt.close()
# Compute site-project phonon DOS and generate file with figure.
#phonon.auto_projected_dos(plot=True)
#plt.savefig(workdir / f"phonopy_{nn_name}_pjdos{self.fig_ext}")
#plt.close()
# Compute thermal properties.
phonon.run_thermal_properties(t_step=10, t_max=1000, t_min=0)
phonon.write_yaml_thermal_properties(filename=workdir / f"phonopy_{nn_name}_thermal_properties.yaml")
phonon.plot_thermal_properties()
plt.savefig(workdir / f"phonopy_{nn_name}_thermal_properties{self.fig_ext}")
plt.close()
return {}
[docs]
class MlVZSISAQHAPhonopy(MlBase):
"""
Perform a VZSISA QHA calculation with phonopy and a ML potential.
"""
def __init__(self,
structure,
bo_vol_scales,
supercell,
distance,
line_density,
qppa,
relax_mode,
fmax,
pressure,
steps,
optimizer,
nn_name,
verbose,
workdir,
prefix=None
):
"""
Args:
structure: Structure object
supercell: Supercell dimensions.
distance: Distance of finite displacements in Angstrom.
line_density: Defines the a density of k-points per reciprocal atom to plot the phonon dispersion.
qppa: Defines the homogeneous q-mesh used for the DOS in units of q-points per atom.
relax_mode: "ions" to relax ions only, "cell" for ions + cell, "no" for no relaxation.
fmax: tolerance for relaxation convergence. Here fmax is a sum of force and stress forces.
steps: max number of steps for relaxation.
optimizer: name of the ASE optimizer to use for relaxation.
nn_name: String defining the NN potential. See also CalcBuilder.
verbose: Verbosity level.
workdir: Working directory, None to generate temporary directory automatically.
prefix: Prefix for workdir.
"""
super().__init__(workdir, prefix)
self.initial_atoms = structure.to_ase_atoms()
self.bo_vol_scales = np.array(bo_vol_scales)
# TODO
#self.ph_vol_scales = np.array(ph_vol_scales)
self.distance = float(distance)
self.fmax = fmax
self.steps = steps
self.optimizer = optimizer
self.nn_name = str(nn_name)
self.verbose = verbose
self.supercell = np.array(supercell)
self.line_density = line_density
self.qppa = qppa
[docs]
def to_string(self, verbose=0):
"""String representation with verbosity level `verbose`."""
supercell = self.supercell.tolist()
s = f"""\
{self.__class__.__name__} parameters:
supercell = {supercell}
distance = {self.distance}
qppa = {self.qppa}
line_density = {self.line_density}
fmax = {self.fmax}
steps = {self.steps}
optimizer = {self.optimizer}
nn_name = {self.nn_name}
workdir = {self.workdir}
verbose = {self.verbose}
"""
return s
[docs]
def run(self) -> None:
"""
Run calculation
"""
workdir = self.workdir
nn_name = self.nn_name
calculator = CalcBuilder(self.nn_name).get_calculator()
atoms = self.initial_atoms.copy()
atoms.calc = calculator
relax_mode = RX_MODE.cell
print(f"Relaxing initial atoms with {relax_mode=}.")
relax_kws = dict(optimizer=self.optimizer,
relax_mode=relax_mode,
fmax=self.fmax,
pressure=0,
steps=self.steps,
traj_path=self.get_path(f"{nn_name}_initial_relax.traj", "ASE relax trajectory"),
verbose=self.verbose,
)
relax = relax_atoms(atoms, **relax_kws)
relax.summarize(["initial", "relaxed"])
print(relax)
v0 = atoms.get_volume()
data = {"bo_vol_scales": self.bo_vol_scales}
data["bo_energies"] = []
for ivol, bo_vol_scale in enumerate(self.bo_vol_scales):
# Scale the cell
new_structure = Structure.as_structure(atoms.copy())
new_vol = v0 * bo_vol_scale
new_atoms = new_structure.scale_lattice(new_vol).to_ase_atoms()
new_atoms.calc = calculator
new_ucf = FrechetCellFilter(new_atoms, constant_volume=True)
vol_workdir = self.get_path(f"VOL_{ivol}", info=f"Directory with phonopy results for {ivol=}, {new_vol=}")
os.mkdir(vol_workdir)
relax_mode = RX_MODE.ions
print(f"Relaxing initial atoms at fixed volume with {relax_mode=}.")
relax_kws = dict(optimizer=self.optimizer,
relax_mode=relax_mode,
fmax=self.fmax,
pressure=0,
steps=self.steps,
traj_path=vol_workdir / "relax.traj",
verbose=self.verbose,
)
relax = relax_atoms(new_ucf, **relax_kws)
relax.summarize(["initial", "relaxed"])
print(relax)
data["bo_energies"].append(new_ucf.get_potential_energy())
# Call phonopy to compute phonons with finite difference and ML potential.
# Include non-analytical term if dipoles are available in the DDB file.
with Timer(header=f"Calling get_phonopy with {nn_name=}", footer=""):
phonon = get_phonopy(new_atoms, self.supercell, calculator,
distance=self.distance, primitive_matrix=None, remove_drift=True)
plt = phonon.auto_band_structure(
npoints=101,
with_eigenvectors=False,
with_group_velocities=False,
plot=True,
write_yaml=True,
filename=vol_workdir / f"band.yml",
)
plt.savefig(vol_workdir / f"phonopy_phbands{self.fig_ext}")
plt.close()
# Save phonopy object in Yaml format.
phonon.save(filename=vol_workdir / f"phonopy_params.yaml", settings={'force_constants': True})
# Compute phonon DOS and generate file with figure.
dos_filepath = vol_workdir / "phonopy_phdos.dat"
phonon.auto_total_dos(plot=True, write_dat=True, filename=dos_filepath)
plt.savefig(vol_workdir / f"phonopy_phdos{self.fig_ext}")
plt.close()
# Compute thermal properties.
phonon.run_thermal_properties(t_step=10, t_max=1000, t_min=0)
phonon.write_yaml_thermal_properties(filename=vol_workdir / "phonopy_thermal_properties.yaml")
phonon.plot_thermal_properties()
plt.savefig(vol_workdir / f"phonopy_thermal_properties{self.fig_ext}")
plt.close()
#phonopy_qha = PhonopyQHA(
# volumes=volumes,
# electronic_energies=electronic_energies,
# temperatures=temperatures,
# free_energy=np.transpose(free_energies),
# entropy=np.transpose(entropies),
# #cv=np.transpose(heat_capacities),
# eos=self.eos,
# t_max=self.t_max,
#)
self.write_json("data.json", data, info="JSON file with final results.")
self._finalize()