Source code for abipy.ml.ml_phonopy

"""
Classes to compute vibrational properties with phonopy and ML potentials.
"""
from __future__ import annotations

import os
import json
import numpy as np
import abipy.core.abinit_units as abu

from monty.dev import requires
from monty.string import list_strings, marquee
from monty.termcolor import cprint
from ase.calculators.calculator import Calculator
from ase.atoms import Atoms
from ase.filters import FrechetCellFilter # ExpCellFilter,
from pymatgen.io.phonopy import get_phonopy_structure
from abipy.core.structure import Structure
from abipy.dfpt.ddb import DdbFile
from abipy.dfpt.phonons import PhononBands, PhononBandsPlotter
from abipy.tools.context_managers import Timer
from abipy.ml.aseml import RX_MODE, CalcBuilder, AseResults, MlBase, relax_atoms, dataframe_from_results_list
try:
    import phonopy
    from phonopy import Phonopy
    from phonopy.structure.atoms import PhonopyAtoms
    from phonopy import PhonopyQHA
except ImportError:
    phonopy = None
    Phonopy = None


[docs] def cprint_traceback(color="red") -> None: """Print traceback.""" import traceback from monty.termcolor import cprint cprint(traceback.format_exc(), color=color)
[docs] @requires(phonopy, "phonopy should be installed to calculate phonons") def get_phonopy(structure: Structure, supercell_matrix, calculator: Calculator, distance=0.01, primitive_matrix=None, remove_drift=True, ) -> Phonopy: """ Build and return a Phonopy instance. Args: structure: Structure object. supercell_matrix: Supercell matrix. calculator: ASE calculator to be attached to the atoms. distance: Distance of finite displacements in Angstrom. primitive_matrix remove_drift: True if the drift in the forces should be removed. Based on a similar implementation available at: https://github.com/modl-uclouvain/randomcarbon/blob/main/randomcarbon/run/phonon.py """ unit_cell = Structure.as_structure(structure).get_phonopy_atoms() phonon = Phonopy(unit_cell, supercell_matrix=supercell_matrix, primitive_matrix=primitive_matrix) phonon.generate_displacements(distance=distance) forces_list = [] nsc = len(phonon.supercells_with_displacements) print(f"Calculating forces for {nsc} supercell configurations ...") for i, sc in enumerate(phonon.supercells_with_displacements): a = Atoms(symbols=sc.symbols, positions=sc.positions, masses=sc.masses, cell=sc.cell, pbc=True, calculator=calculator) forces = a.get_forces() if remove_drift: drift_force = forces.sum(axis=0) for force in forces: force -= drift_force / forces.shape[0] forces_list.append(forces) print(f"\t{i+1} of {nsc} completed ...") phonon.produce_force_constants(forces_list) return phonon
[docs] class MlPhonopyWithDDB(MlBase): """ Compute phonons with phonopy and a ML potential starting from a DDB file and compare the results. """ def __init__(self, ddb_filepath, distance, asr, dipdip, line_density, qppa, relax_mode, fmax, pressure, steps, optimizer, nn_names, verbose, workdir, prefix=None, supercell=None ): """ Args: ddb_filepath: DDB filepath. distance: Distance of finite displacement in Angstrom. asr: Enforce acoustic sum-rule. Abinit variable. dipdip: Treatment of dipole-dipole term. Abinit variable. line_density: Defines the density of k-points per reciprocal atom to plot the phonon dispersion. qppa: Defines the homogeneous q-mesh used for the DOS in units of q-points per atom. relax_mode: "ions" to relax ions only, "cell" for ions + cell, "no" for no relaxation. fmax: tolerance for relaxation convergence. Here fmax is a sum of force and stress forces. pressure: Target pressure. steps: max number of steps for relaxation. optimizer: name of the ASE optimizer to use for relaxation. nn_names: String or list of strings defining the NN potential. See also CalcBuilder. verbose: Verbosity level. workdir: Working directory, None to generate temporary directory automatically. prefix: Prefix for workdir supercell: with supercell dimensions. None to use the supercell from the DDB file. """ super().__init__(workdir, prefix) self.distance = float(distance) self.asr = asr self.dipdip = dipdip self.relax_mode = relax_mode RX_MODE.validate(self.relax_mode) self.fmax = fmax self.pressure = pressure self.steps = steps self.optimizer = optimizer self.nn_names = list_strings(nn_names) self.verbose = verbose self.supercell = supercell self.line_density = line_density self.qppa = qppa self.ddb_filepath = ddb_filepath with DdbFile(self.ddb_filepath) as ddb: self.initial_atoms = ddb.structure.to_ase_atoms() if self.supercell is None: # Take supercell from the q-mesh used in the DDB. self.supercell = np.eye(3) * ddb.guessed_ngqpt if self.supercell is None: raise ValueError("Supercell must be specified in input!") self.supercell = np.array(self.supercell) self.abi_nac_params = {}
[docs] def to_string(self, verbose=0): """String representation with verbosity level `verbose`.""" supercell = self.supercell.tolist() s = f"""\ {self.__class__.__name__} parameters: ddb_path = {self.ddb_filepath} supercell = {supercell} distance = {self.distance} qppa = {self.qppa} asr = {self.asr} dipdip = {self.dipdip} line_density = {self.line_density} relax_mode = {self.relax_mode} fmax = {self.fmax} steps = {self.steps} optimizer = {self.optimizer} pressure = {self.pressure} nn_names = {self.nn_names} workdir = {self.workdir} verbose = {self.verbose} """ return s
[docs] def run(self) -> None: """ Run MlPhonopyWithDDB. """ # Run anaddb computation and save results in self. with DdbFile(self.ddb_filepath) as ddb, Timer(header="Starting anaddb ph-bands computation...") as timer: if ddb.has_lo_to_data and self.dipdip != 0: # according to the phonopy website 14.399652 is not the coefficient for abinit # probably it relies on the other conventions in the output. out = ddb.anaget_epsinf_and_becs() self.abi_nac_params = {"born": out.becs.values, "dielectric": out.epsinf, "factor": 14.399652} # ab-initio phonons from the DDB. with ddb.anaget_phbst_and_phdos_files( qppa=self.qppa, line_density=self.line_density, asr=self.asr, dipdip=self.dipdip, verbose=self.verbose) as g: phbst_file, phdos_file = g[0], g[1] self.abi_phbands = phbst_file.phbands # The q-points passed to phonopy. self.py_qpoints = [[qpt.frac_coords for qpt in self.abi_phbands.qpoints]] data = {} data["ddb"] = self.abi_phbands.get_phfreqs_stats_dict() d_nn = data["nn_names"] = {} for nn_name in self.nn_names: try: d = self._run_nn_name(nn_name) d_nn[nn_name] = d d_nn[nn_name]["exception"] = None except Exception as exc: cprint_traceback() d_nn[nn_name] = {} d_nn[nn_name]["exception"] = str(exc) self.write_json("data.json", data, info="JSON file with final results.") self._finalize()
def _run_nn_name(self, nn_name: str) -> None: """ Run calculation for a single NN potential. """ workdir = self.workdir calculator = CalcBuilder(nn_name).get_calculator() atoms = self.initial_atoms.copy() atoms.calc = calculator natom = len(atoms) if self.relax_mode == RX_MODE.cell: raise RuntimeError("One should not relax the cell when comparing ML phonons with a DDB file!") if self.relax_mode != RX_MODE.no: print(f"Relaxing input DDB atoms with relax mode: {self.relax_mode}.") relax_kws = dict(optimizer=self.optimizer, relax_mode=self.relax_mode, fmax=self.fmax, pressure=self.pressure, steps=self.steps, traj_path=self.get_path(f"{nn_name}_relax.traj", "ASE relax trajectory"), verbose=self.verbose, ) relax = relax_atoms(atoms, **relax_kws) relax.summarize(["DDB_initial", "DDB_relaxed"]) #print(relax) # Call phonopy to compute phonons with finite difference and ML potential. # Include non-analytical term if dipoles are available in the DDB file. with Timer(header=f"Calling get_phonopy with {nn_name=}", footer=""): phonon = get_phonopy(atoms, self.supercell, calculator, distance=self.distance, primitive_matrix=None, remove_drift=True) if self.abi_nac_params: print("Including dipolar term in phonopy using BECS and eps_inf taken from DDB.") phonon.nac_params = self.abi_nac_params # Save phonopy object in Yaml format. phonon.save(filename=workdir / f"phonopy_params.yaml", settings={'force_constants': True}) with Timer(header="Starting phonopy ph-band computation...", footer=""): phonon.run_band_structure(self.py_qpoints, with_eigenvectors=True) plt = phonon.plot_band_structure() plt.savefig(workdir / f"phonopy_{nn_name}_phbands{self.fig_ext}") plt.close() bands_dict = phonon.get_band_structure_dict() nqpt = 0 py_phfreqs, py_displ_cart = [], [] for q_list, w_list, eig_list in zip(bands_dict['qpoints'], bands_dict['frequencies'], bands_dict['eigenvectors'], strict=True): nqpt += len(q_list) py_phfreqs.extend(w_list) py_displ_cart.extend(eig_list) py_phfreqs = np.reshape(py_phfreqs, (nqpt, 3*natom)) / abu.eV_to_THz py_displ_cart = np.reshape(py_displ_cart, (nqpt, 3*natom, 3*natom)) # Build abipy phonon bands from phonopy results. py_phbands = PhononBands(self.abi_phbands.structure, self.abi_phbands.qpoints, py_phfreqs, # FIXME: Use phononopy displacement self.abi_phbands.phdispl_cart, non_anal_ph=None, amu=self.abi_phbands.amu, epsinf=self.abi_phbands.epsinf, zcart=self.abi_phbands.zcart, ) # TODO #py_phbands = PhononBands.from_phonopy_phonon(phonon) # Compute diff stats. mabs_wdiff_ev = np.abs(py_phbands.phfreqs - self.abi_phbands.phfreqs).mean() ph_plotter = PhononBandsPlotter(key_phbands=[ (f"phonopy with {nn_name}", py_phbands), ("ABINIT DDB", self.abi_phbands), ]) mae_str = f"MAE {1000 * mabs_wdiff_ev:.3f} meV" print(mae_str) latex_formula = self.abi_phbands.structure.latex_formula ph_plotter.combiplot(title=f"{latex_formula}: {mae_str}", units="meV", savefig=str(workdir / f"combiplot_{nn_name}.pdf"), show=False) data = dict( mabs_wdiff_ev=mabs_wdiff_ev, **py_phbands.get_phfreqs_stats_dict() ) # Compute phonon DOS and generate file with figure. #phonon.auto_total_dos(plot=True) #plt.savefig(workdir / f"phonopy_{nn_name}_phdos{self.fig_ext}") #plt.close() # Compute site-project phonon DOS and generate file with figure. #phonon.auto_projected_dos(plot=True) #plt.savefig(workdir / f"phonopy_{nn_name}_pjdos{self.fig_ext}") #plt.close() #phonon.run_thermal_properties(t_step=10, t_max=1000, t_min=0) #phonon.write_yaml_thermal_properties(filename=workdir / f"phonopy_{nn_name}_thermal_properties.yaml") return data
[docs] class MlPhonopy(MlBase): """ Compute phonons with phonopy and a ML potential. """ def __init__(self, structure, supercell, distance, line_density, qppa, relax_mode, fmax, pressure, steps, optimizer, nn_names, verbose, workdir, prefix=None ): """ Args: structure: Structure object supercell: Supercell dimensions. distance: Distance of finite displacements in Angstrom. line_density: Defines the a density of k-points per reciprocal atom to plot the phonon dispersion. qppa: Defines the homogeneous q-mesh used for the DOS in units of q-points per atom. relax_mode: "ions" to relax ions only, "cell" for ions + cell, "no" for no relaxation. fmax: tolerance for relaxation convergence. Here fmax is a sum of force and stress forces. pressure: Target pressure. steps: max number of steps for relaxation. optimizer: name of the ASE optimizer to use for relaxation. nn_names: String or list of strings defining the NN potential. See also CalcBuilder. verbose: Verbosity level. workdir: Working directory, None to generate temporary directory automatically. prefix: Prefix for workdir. """ super().__init__(workdir, prefix) self.initial_atoms = structure.to_ase_atoms() self.distance = float(distance) self.relax_mode = relax_mode RX_MODE.validate(self.relax_mode) self.fmax = fmax self.pressure = pressure self.steps = steps self.optimizer = optimizer self.nn_names = list_strings(nn_names) self.verbose = verbose self.supercell = np.array(supercell) self.line_density = line_density self.qppa = qppa
[docs] def to_string(self, verbose=0): """String representation with verbosity level `verbose`.""" supercell = self.supercell.tolist() s = f"""\ {self.__class__.__name__} parameters: supercell = {supercell} distance = {self.distance} qppa = {self.qppa} line_density = {self.line_density} relax_mode = {self.relax_mode} fmax = {self.fmax} steps = {self.steps} optimizer = {self.optimizer} pressure = {self.pressure} nn_names = {self.nn_names} workdir = {self.workdir} verbose = {self.verbose} """ return s
[docs] def run(self) -> None: """Run calculation.""" data = {} d_nn = data["nn_names"] = {} for nn_name in self.nn_names: try: d = self._run_nn_name(nn_name) d_nn[nn_name] = d d_nn[nn_name]["exception"] = None except Exception as exc: cprint_traceback() d_nn[nn_name] = {} d_nn[nn_name]["exception"] = str(exc) self.write_json("data.json", data, info="JSON file with final results.") self._finalize()
def _run_nn_name(self, nn_name: str) -> dict: """ Run calculation for a single NN potential. """ workdir = self.workdir calculator = CalcBuilder(nn_name).get_calculator() atoms = self.initial_atoms.copy() atoms.calc = calculator if self.relax_mode != RX_MODE.no: print(f"Relaxing input atoms with relax mode: {self.relax_mode}.") relax_kws = dict(optimizer=self.optimizer, relax_mode=self.relax_mode, fmax=self.fmax, pressure=self.pressure, steps=self.steps, traj_path=self.get_path(f"{nn_name}_relax.traj", "ASE relax trajectory"), verbose=self.verbose, ) relax = relax_atoms(atoms, **relax_kws) relax.summarize(["initial", "relaxed"]) print(relax) # Call phonopy to compute phonons with finite difference and ML potential. # Include non-analytical term if dipoles are available in the DDB file. with Timer(header=f"Calling get_phonopy with {nn_name=}", footer=""): phonon = get_phonopy(atoms, self.supercell, calculator, distance=self.distance, primitive_matrix=None, remove_drift=True) plt = phonon.auto_band_structure( npoints=101, with_eigenvectors=False, with_group_velocities=False, plot=True, write_yaml=True, filename=workdir / f"{nn_name}_band.yml", ) plt.savefig(workdir / f"phonopy_{nn_name}_phbands{self.fig_ext}") plt.close() # Save phonopy object in Yaml format. phonon.save(filename=workdir / f"phonopy_params.yaml", settings={'force_constants': True}) # Compute phonon DOS and generate file with figure. phonon.auto_total_dos(plot=True) plt.savefig(workdir / f"phonopy_{nn_name}_phdos{self.fig_ext}") plt.close() # Compute site-project phonon DOS and generate file with figure. #phonon.auto_projected_dos(plot=True) #plt.savefig(workdir / f"phonopy_{nn_name}_pjdos{self.fig_ext}") #plt.close() # Compute thermal properties. phonon.run_thermal_properties(t_step=10, t_max=1000, t_min=0) phonon.write_yaml_thermal_properties(filename=workdir / f"phonopy_{nn_name}_thermal_properties.yaml") phonon.plot_thermal_properties() plt.savefig(workdir / f"phonopy_{nn_name}_thermal_properties{self.fig_ext}") plt.close() return {}
[docs] class MlVZSISAQHAPhonopy(MlBase): """ Perform a VZSISA QHA calculation with phonopy and a ML potential. """ def __init__(self, structure, bo_vol_scales, supercell, distance, line_density, qppa, relax_mode, fmax, pressure, steps, optimizer, nn_name, verbose, workdir, prefix=None ): """ Args: structure: Structure object supercell: Supercell dimensions. distance: Distance of finite displacements in Angstrom. line_density: Defines the a density of k-points per reciprocal atom to plot the phonon dispersion. qppa: Defines the homogeneous q-mesh used for the DOS in units of q-points per atom. relax_mode: "ions" to relax ions only, "cell" for ions + cell, "no" for no relaxation. fmax: tolerance for relaxation convergence. Here fmax is a sum of force and stress forces. steps: max number of steps for relaxation. optimizer: name of the ASE optimizer to use for relaxation. nn_name: String defining the NN potential. See also CalcBuilder. verbose: Verbosity level. workdir: Working directory, None to generate temporary directory automatically. prefix: Prefix for workdir. """ super().__init__(workdir, prefix) self.initial_atoms = structure.to_ase_atoms() self.bo_vol_scales = np.array(bo_vol_scales) # TODO #self.ph_vol_scales = np.array(ph_vol_scales) self.distance = float(distance) self.fmax = fmax self.steps = steps self.optimizer = optimizer self.nn_name = str(nn_name) self.verbose = verbose self.supercell = np.array(supercell) self.line_density = line_density self.qppa = qppa
[docs] def to_string(self, verbose=0): """String representation with verbosity level `verbose`.""" supercell = self.supercell.tolist() s = f"""\ {self.__class__.__name__} parameters: supercell = {supercell} distance = {self.distance} qppa = {self.qppa} line_density = {self.line_density} fmax = {self.fmax} steps = {self.steps} optimizer = {self.optimizer} nn_name = {self.nn_name} workdir = {self.workdir} verbose = {self.verbose} """ return s
[docs] def run(self) -> None: """ Run calculation """ workdir = self.workdir nn_name = self.nn_name calculator = CalcBuilder(self.nn_name).get_calculator() atoms = self.initial_atoms.copy() atoms.calc = calculator relax_mode = RX_MODE.cell print(f"Relaxing initial atoms with {relax_mode=}.") relax_kws = dict(optimizer=self.optimizer, relax_mode=relax_mode, fmax=self.fmax, pressure=0, steps=self.steps, traj_path=self.get_path(f"{nn_name}_initial_relax.traj", "ASE relax trajectory"), verbose=self.verbose, ) relax = relax_atoms(atoms, **relax_kws) relax.summarize(["initial", "relaxed"]) print(relax) v0 = atoms.get_volume() data = {"bo_vol_scales": self.bo_vol_scales} data["bo_energies"] = [] for ivol, bo_vol_scale in enumerate(self.bo_vol_scales): # Scale the cell new_structure = Structure.as_structure(atoms.copy()) new_vol = v0 * bo_vol_scale new_atoms = new_structure.scale_lattice(new_vol).to_ase_atoms() new_atoms.calc = calculator new_ucf = FrechetCellFilter(new_atoms, constant_volume=True) vol_workdir = self.get_path(f"VOL_{ivol}", info=f"Directory with phonopy results for {ivol=}, {new_vol=}") os.mkdir(vol_workdir) relax_mode = RX_MODE.ions print(f"Relaxing initial atoms at fixed volume with {relax_mode=}.") relax_kws = dict(optimizer=self.optimizer, relax_mode=relax_mode, fmax=self.fmax, pressure=0, steps=self.steps, traj_path=vol_workdir / "relax.traj", verbose=self.verbose, ) relax = relax_atoms(new_ucf, **relax_kws) relax.summarize(["initial", "relaxed"]) print(relax) data["bo_energies"].append(new_ucf.get_potential_energy()) # Call phonopy to compute phonons with finite difference and ML potential. # Include non-analytical term if dipoles are available in the DDB file. with Timer(header=f"Calling get_phonopy with {nn_name=}", footer=""): phonon = get_phonopy(new_atoms, self.supercell, calculator, distance=self.distance, primitive_matrix=None, remove_drift=True) plt = phonon.auto_band_structure( npoints=101, with_eigenvectors=False, with_group_velocities=False, plot=True, write_yaml=True, filename=vol_workdir / f"band.yml", ) plt.savefig(vol_workdir / f"phonopy_phbands{self.fig_ext}") plt.close() # Save phonopy object in Yaml format. phonon.save(filename=vol_workdir / f"phonopy_params.yaml", settings={'force_constants': True}) # Compute phonon DOS and generate file with figure. dos_filepath = vol_workdir / "phonopy_phdos.dat" phonon.auto_total_dos(plot=True, write_dat=True, filename=dos_filepath) plt.savefig(vol_workdir / f"phonopy_phdos{self.fig_ext}") plt.close() # Compute thermal properties. phonon.run_thermal_properties(t_step=10, t_max=1000, t_min=0) phonon.write_yaml_thermal_properties(filename=vol_workdir / "phonopy_thermal_properties.yaml") phonon.plot_thermal_properties() plt.savefig(vol_workdir / f"phonopy_thermal_properties{self.fig_ext}") plt.close() #phonopy_qha = PhonopyQHA( # volumes=volumes, # electronic_energies=electronic_energies, # temperatures=temperatures, # free_energy=np.transpose(free_energies), # entropy=np.transpose(entropies), # #cv=np.transpose(heat_capacities), # eos=self.eos, # t_max=self.t_max, #) self.write_json("data.json", data, info="JSON file with final results.") self._finalize()