ml Package
ml Package
ml
Package
aseml
Package
Objects to perform ASE calculations with machine-learned potentials.
- class abipy.ml.aseml.RX_MODE(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]
-
Relaxation mode string flags.
- no = 'no'
- ions = 'ions'
- cell = 'cell'
- abipy.ml.aseml.abisanitize_atoms(atoms: Atoms, **kwargs) Atoms [source]
Call abisanitize, return new Atoms instance.
- abipy.ml.aseml.fix_atoms(atoms: Atoms, fix_inds: list[int] | None = None, fix_symbols: list[str] | None = None) None [source]
Fix atoms by indices and/or by symbols.
- Parameters:
atoms – ASE atoms
fix_inds – List of site indices to fix. None to ignore constraint.
fix_symbols – List of chemical elements to fix. None to ignore the constraint.
- abipy.ml.aseml.write_atoms(atoms: Atoms, workdir, verbose: int, formats=None, prefix=None, postfix=None) list[tuple[Path, str]] [source]
Write atoms to file(s), return list with (Path, fmt) tuples.
- Parameters:
atoms – ASE atoms
workdir – Working directory.
verbose – Verbosity level.
formats – List of strings with file formats. If None all known formats are used.
prefix – String to be prepended to filenames.
- abipy.ml.aseml.print_atoms(atoms: ~ase.atoms.Atoms, title=None, cart_forces=None, stream=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>) None [source]
Print atoms object to stream.
- Parameters:
atoms – ASE atoms.
title – Optional string with the title.
cart_forces – np.array with cart_forces to print.
stream – Output stream
- abipy.ml.aseml.diff_two_structures(label1, structure1, label2, structure2, fmt, file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)[source]
Diff two structures using format fmt`and print results to `file.
- class abipy.ml.aseml.AseTrajectoryPlotter(traj: Trajectory)[source]
Bases:
object
Plot an ASE trajectory with matplotlib.
- classmethod from_file(filepath: str | PathLike) AseTrajectoryPlotter [source]
Initialize an instance from file filepath
- plot(fontsize=8, xlims=None, marker='o', **kwargs) Any [source]
Plot energies, force stats, and pressure as a function of the trajectory index.
Keyword arguments controlling the display of the figure:
kwargs
Meaning
title
Title of the plot (Default: None).
show
True to show the figure (default: True).
savefig
“abc.png” or “abc.eps” to save the figure to a file.
size_kwargs
Dictionary with options passed to fig.set_size_inches e.g. size_kwargs=dict(w=3, h=4)
tight_layout
True to call fig.tight_layout (default: False)
ax_grid
True (False) to add (remove) grid from all axes in fig. Default: None i.e. fig is left unchanged.
ax_annotate
Add labels to subplots e.g. (a), (b). Default: False
fig_close
Close figure. Default: False.
plotly
Try to convert mpl figure to plotly.
- plot_lattice(ax_list=None, fontsize=8, marker='o', xlims=None, **kwargs) Any [source]
Plot lattice lengths/angles/volume as a function the of the trajectory index.
- Parameters:
ax_list – List of axis or None if a new figure should be created.
fontsize – fontsize for legends and titles
xlims – Set the data limits for the x-axis. Accept tuple e.g.
(left, right)
or scalar e.g.left
. If left (right) is None, default values are used.
Keyword arguments controlling the display of the figure:
kwargs
Meaning
title
Title of the plot (Default: None).
show
True to show the figure (default: True).
savefig
“abc.png” or “abc.eps” to save the figure to a file.
size_kwargs
Dictionary with options passed to fig.set_size_inches e.g. size_kwargs=dict(w=3, h=4)
tight_layout
True to call fig.tight_layout (default: False)
ax_grid
True (False) to add (remove) grid from all axes in fig. Default: None i.e. fig is left unchanged.
ax_annotate
Add labels to subplots e.g. (a), (b). Default: False
fig_close
Close figure. Default: False.
plotly
Try to convert mpl figure to plotly.
- abipy.ml.aseml.get_fstats(cart_forces: ndarray) dict [source]
Return dictionary with statistics on the Cartesian forces.
- class abipy.ml.aseml.AseResults(atoms: Atoms, ene: float, stress: ndarray, forces: ndarray, magmoms: ndarray)[source]
Bases:
HasPickleIO
Container with the results produced by an ASE calculator.
- atoms: Atoms
- classmethod from_traj_inds(trajectory: Trajectory, *inds) list[AseResults] [source]
Build list of AseResults from a trajectory and list of indices.
- classmethod from_atoms(atoms: Atoms, calc=None, with_stress=True, with_magmoms=True) AseResults [source]
Build the object from an atoms instance with a calculator.
- class abipy.ml.aseml.AseResultsComparator(structure, keys, ene_list, forces_list, stress_list)[source]
Bases:
HasPickleIO
This object allows one to compare energies, forces and stresses computed for the same structure but with different methods e.g. results obtained with different ML potentials.
- ALL_VOIGT_COMPS = ['xx', 'yy', 'zz', 'yz', 'xz', 'xy']
- classmethod from_ase_results(keys: list[str], results_list: list[list[AseResults]])[source]
Build object from list of keys and list of AseResults.
- pickle_dump_and_write_script(workdir: str | PathLike) None [source]
Write pickle file for object persistence and python script.
- get_aligned_energies_traj(istep=-1) ndarray [source]
Return energies in eV aligned with respect to self.iref key. Use the energy at the istep step index.
- xy_energies_for_keys(key1: str, key2: str, sort=True) tuple [source]
Return (xs, ys) sorted arrays with aligned energies for (key1, key2).
- xy_forces_for_keys(key1, key2, direction, symbol=None, site_inds=None) tuple [source]
Return (xs, ys), sorted arrays with forces along the cart direction for (key1, key2).
- Parameters:
symbol – If not None, select only forces for this atomic specie.
site_inds – List of site indices to consider. None if all sites should be included.
- traj_forces_for_keys(key1, key2) tuple [source]
Return arrays with the cart direction of forces along the trajectory for (key1, key2).
- xy_stress_for_keys(key1, key2, voigt_comp, sort=True) tuple [source]
Return xs, ys sorted arrays with the stress along the voigt component for (key1, key2).
- get_forces_dataframe() DataFrame [source]
Return dataFrame with columns (fx, fy, fz, isite, istep, key)
- get_stress_dataframe() DataFrame [source]
Return DataFrame with columns [sxx,syy,szz, … ,istep,key]
- plot_energies(fontsize=8, **kwargs) Any [source]
Compare energies aligned wrt to self.iref entry
Keyword arguments controlling the display of the figure:
kwargs
Meaning
title
Title of the plot (Default: None).
show
True to show the figure (default: True).
savefig
“abc.png” or “abc.eps” to save the figure to a file.
size_kwargs
Dictionary with options passed to fig.set_size_inches e.g. size_kwargs=dict(w=3, h=4)
tight_layout
True to call fig.tight_layout (default: False)
ax_grid
True (False) to add (remove) grid from all axes in fig. Default: None i.e. fig is left unchanged.
ax_annotate
Add labels to subplots e.g. (a), (b). Default: False
fig_close
Close figure. Default: False.
plotly
Try to convert mpl figure to plotly.
- plot_forces(symbol=None, site_inds=None, fontsize=8, **kwargs) Any [source]
Parity plot for forces.
- Parameters:
symbol – If not None, select only forces for this atomic specie.
site_inds – List of site indices to consider. None if all sites should be included.
Keyword arguments controlling the display of the figure:
kwargs
Meaning
title
Title of the plot (Default: None).
show
True to show the figure (default: True).
savefig
“abc.png” or “abc.eps” to save the figure to a file.
size_kwargs
Dictionary with options passed to fig.set_size_inches e.g. size_kwargs=dict(w=3, h=4)
tight_layout
True to call fig.tight_layout (default: False)
ax_grid
True (False) to add (remove) grid from all axes in fig. Default: None i.e. fig is left unchanged.
ax_annotate
Add labels to subplots e.g. (a), (b). Default: False
fig_close
Close figure. Default: False.
plotly
Try to convert mpl figure to plotly.
- plot_stresses(fontsize=6, **kwargs) Any [source]
Compare stress components.
Keyword arguments controlling the display of the figure:
kwargs
Meaning
title
Title of the plot (Default: None).
show
True to show the figure (default: True).
savefig
“abc.png” or “abc.eps” to save the figure to a file.
size_kwargs
Dictionary with options passed to fig.set_size_inches e.g. size_kwargs=dict(w=3, h=4)
tight_layout
True to call fig.tight_layout (default: False)
ax_grid
True (False) to add (remove) grid from all axes in fig. Default: None i.e. fig is left unchanged.
ax_annotate
Add labels to subplots e.g. (a), (b). Default: False
fig_close
Close figure. Default: False.
plotly
Try to convert mpl figure to plotly.
- plot_energies_traj(delta_mode=True, fontsize=6, markersize=2, **kwargs) Any [source]
Plot energies along the trajectory.
- Parameters:
delta_mode – True to plot differences instead of absolute values.
Keyword arguments controlling the display of the figure:
kwargs
Meaning
title
Title of the plot (Default: None).
show
True to show the figure (default: True).
savefig
“abc.png” or “abc.eps” to save the figure to a file.
size_kwargs
Dictionary with options passed to fig.set_size_inches e.g. size_kwargs=dict(w=3, h=4)
tight_layout
True to call fig.tight_layout (default: False)
ax_grid
True (False) to add (remove) grid from all axes in fig. Default: None i.e. fig is left unchanged.
ax_annotate
Add labels to subplots e.g. (a), (b). Default: False
fig_close
Close figure. Default: False.
plotly
Try to convert mpl figure to plotly.
- plot_forces_traj(delta_mode=True, symbol=None, fontsize=6, markersize=2, **kwargs) Any [source]
Plot forces along the trajectory.
- Parameters:
delta_mode – True to plot differences instead of absolute values.
symbol – If not None, select only forces for this atomic species
Keyword arguments controlling the display of the figure:
kwargs
Meaning
title
Title of the plot (Default: None).
show
True to show the figure (default: True).
savefig
“abc.png” or “abc.eps” to save the figure to a file.
size_kwargs
Dictionary with options passed to fig.set_size_inches e.g. size_kwargs=dict(w=3, h=4)
tight_layout
True to call fig.tight_layout (default: False)
ax_grid
True (False) to add (remove) grid from all axes in fig. Default: None i.e. fig is left unchanged.
ax_annotate
Add labels to subplots e.g. (a), (b). Default: False
fig_close
Close figure. Default: False.
plotly
Try to convert mpl figure to plotly.
- plot_stress_traj(delta_mode=True, markersize=2, fontsize=6, **kwargs) Any [source]
Plot stresses along the trajectory.
- Parameters:
delta_mode – True to plot differences instead of absolute values.
Keyword arguments controlling the display of the figure:
kwargs
Meaning
title
Title of the plot (Default: None).
show
True to show the figure (default: True).
savefig
“abc.png” or “abc.eps” to save the figure to a file.
size_kwargs
Dictionary with options passed to fig.set_size_inches e.g. size_kwargs=dict(w=3, h=4)
tight_layout
True to call fig.tight_layout (default: False)
ax_grid
True (False) to add (remove) grid from all axes in fig. Default: None i.e. fig is left unchanged.
ax_annotate
Add labels to subplots e.g. (a), (b). Default: False
fig_close
Close figure. Default: False.
plotly
Try to convert mpl figure to plotly.
- class abipy.ml.aseml.AseRelaxation(dyn, r0, r1, traj_path)[source]
Bases:
object
Container with the results produced by the ASE calculator.
- abipy.ml.aseml.dataframe_from_results_list(index: list, results_list: list[AseResults], mode='smart') DataFrame [source]
- abipy.ml.aseml.ase_optimizer_cls(s: str | Optimizer) Type | list[str] [source]
Return an ASE Optimizer subclass from string s. If s == “__all__”, return list with all Optimizer subclasses supported by ASE.
- abipy.ml.aseml.relax_atoms(atoms: Atoms, relax_mode: str, optimizer: str, fmax: float, pressure: float, verbose: int, steps: int = 500, opt_kwargs=None, traj_path=None, calculator=None) AseRelaxation [source]
Relax atoms using an ASE calculator and ASE algorithms.
- Parameters:
atoms – ASE atoms.
relax_mode – “ions” to relax ions only, “cell” for ions + cell, “no” for no relaxation.
optimizer – name of the ASE optimizer to use for relaxation.
fmax – tolerance for relaxation convergence. Here fmax is a sum of force and stress forces.
pressure – Target pressure in GPa.
verbose – whether to print stdout.
steps – max number of steps for relaxation.
opt_kwargs (dict) – kwargs for the ASE optimizer class.
traj_path
calculator
- abipy.ml.aseml.silence_tensorflow() None [source]
Silence every unnecessary warning from tensorflow.
- class abipy.ml.aseml.CORRALGO(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]
Bases:
IntEnum
Enumerate the different algorithms used to correct the ML forces/stresses.
- none = 0
- delta = 1
- one_point = 2
- abipy.ml.aseml.get_installed_nn_names(verbose=0, printout=True) tuple[list[str], list[str]] [source]
Return list of strings with the names of the nn potentials installed in the environment
- abipy.ml.aseml.install_nn_names(nn_names='all', update=False, verbose=0) None [source]
Install NN potentials in the environment using pip.
- Parameters:
nn_names – List of NN potentisl to install.
update – True if packages should be updated.
verbose – Verbosity level.
- class abipy.ml.aseml.CalcBuilder(name: str, dftd3_args=None, **kwargs)[source]
Bases:
object
Factory class to build an ASE calculator with a ML potential as backend. Supports different backends defined by name string. Possible formats are:
nn_type e.g. m3gnet. See ALL_NN_TYPES for available keys.
nn_type:model_name
nn_type@model_path e.g.: mace:FILEPATH
nn_type@calc_kwargs.yaml e.g.: mace:calc_kwargs.yaml.
- ALL_NN_TYPES = ['emt', 'm3gnet', 'matgl', 'chgnet', 'alignn', 'mace', 'mace_mp', 'pyace', 'nequip', 'metatensor', 'deepmd', 'orb', 'sevenn', 'mattersim']
- class abipy.ml.aseml.MlBase(workdir, prefix=None, exist_ok=False, fig_ext: str = '.pdf')[source]
Bases:
HasPickleIO
Base class for all Ml subclasses providing helper methods to perform typical tasks such as writing files in the workdir and object persistence via pickle.
- add_basename_info(basename: str, info: str) None [source]
Register basename with info in the internal buffer used to generate the README.md file in _finalize. Print WARNING if basename is already registered.
- class abipy.ml.aseml.MlRelaxer(atoms: Atoms, relax_mode, fmax, pressure, steps, optimizer, nn_name, verbose, workdir, prefix=None)[source]
Bases:
MlBase
Relax a structure with ASE and ML-potential.
- classmethod from_abinit_yaml_file(filepath: str, workdir=None, prefix=None) MlRelaxer [source]
Build object from a YAML file produced by ABINIT in hybrid relaxation mode.
- abipy.ml.aseml.restart_md(traj_filepath, atoms, verbose) tuple[bool, int] [source]
Try to restart a MD run from an existent trajectory file. Return: (restart_bool, len_traj)
- class abipy.ml.aseml.AseMdLog(filepath: str)[source]
Bases:
TextFile
Postprocessing tool for the log file produced by ASE MD.
Inheritance Diagram
- time_key = 'Time[ps]'
- plot(**kwargs) Any [source]
Plot all the keys in the dataframe.
Keyword arguments controlling the display of the figure:
kwargs
Meaning
title
Title of the plot (Default: None).
show
True to show the figure (default: True).
savefig
“abc.png” or “abc.eps” to save the figure to a file.
size_kwargs
Dictionary with options passed to fig.set_size_inches e.g. size_kwargs=dict(w=3, h=4)
tight_layout
True to call fig.tight_layout (default: False)
ax_grid
True (False) to add (remove) grid from all axes in fig. Default: None i.e. fig is left unchanged.
ax_annotate
Add labels to subplots e.g. (a), (b). Default: False
fig_close
Close figure. Default: False.
plotly
Try to convert mpl figure to plotly.
- histplot(**kwargs) Any [source]
Histogram plot.
Keyword arguments controlling the display of the figure:
kwargs
Meaning
title
Title of the plot (Default: None).
show
True to show the figure (default: True).
savefig
“abc.png” or “abc.eps” to save the figure to a file.
size_kwargs
Dictionary with options passed to fig.set_size_inches e.g. size_kwargs=dict(w=3, h=4)
tight_layout
True to call fig.tight_layout (default: False)
ax_grid
True (False) to add (remove) grid from all axes in fig. Default: None i.e. fig is left unchanged.
ax_annotate
Add labels to subplots e.g. (a), (b). Default: False
fig_close
Close figure. Default: False.
plotly
Try to convert mpl figure to plotly.
- class abipy.ml.aseml.MlMd(atoms: Atoms, temperature, pressure, timestep, steps, loginterval, ensemble, nn_name, verbose, workdir, prefix=None)[source]
Bases:
MlBase
Perform MD calculations with ASE and ML potential.
- class abipy.ml.aseml.MlRelaxerFromMdTraj(traj_filepath, relax_mode, fmax, pressure, steps, optimizer, nn_name, verbose, workdir, prefix=None)[source]
Bases:
MlBase
- class abipy.ml.aseml.MlGsList(atoms_list: list[Atoms], nn_name, verbose, workdir, prefix=None)[source]
Bases:
_MlNebBase
Perform ground-state calculations for a list of atoms with ASE and ML-potential. Inherits from _MlNebBase so that we can reuse postprocess_images and read_neb_data.
- class abipy.ml.aseml.MlNeb(initial_atoms: Atoms, final_atoms: Atoms, nimages, neb_method, climb, optimizer, relax_mode, fmax, pressure, nn_name, verbose, workdir, prefix=None)[source]
Bases:
_MlNebBase
Perform NEB calculation with ASE and ML potential.
- class abipy.ml.aseml.MultiMlNeb(atoms_list: list[Atoms], nimages, neb_method, climb, optimizer, relax_mode, fmax, pressure, nn_name, verbose, workdir, prefix=None)[source]
Bases:
_MlNebBase
Perform a multi-NEB calculation with ASE and ML potential.
- abipy.ml.aseml.make_ase_neb(initial: Atoms, final: Atoms, nimages: int, calculators: list, neb_method: str, climb: bool, method='linear', mic=False) NEB [source]
Make a NEB band consisting of nimages. See https://databases.fysik.dtu.dk/ase/ase/neb.html
- Parameters:
initial – First point.
final – Last point.
nimages – Number of images.
calculators – List of ASE calculators.
neb_method – String defining NEB algorithm.
climb – True to use a climbing image.
method – str Method by which to interpolate: ‘linear’ or ‘idpp’. linear provides a standard straight-line interpolation, while idpp uses an image-dependent pair potential.
mic – Map movement into the unit cell by using the minimum image convention.
- class abipy.ml.aseml.MlOrderer(structure, max_ns, optimizer, relax_mode, fmax, pressure, steps, nn_name, verbose, workdir, prefix=None)[source]
Bases:
MlBase
Order a disordered structure using pymatgen and ML potential.
- class abipy.ml.aseml.MlValidateWithAbinitio(filepaths, nn_names, traj_range, verbose, workdir, prefix=None)[source]
Bases:
_MlNebBase
Compare ab-initio energies, forces and stresses with ML results.
- get_abinitio_results() list[AseResults] [source]
- run(nprocs, print_dataframes=True) AseResultsComparator [source]
Run calculation with nprocs processes.
- class abipy.ml.aseml.MolecularDynamics(atoms: Atoms, ensemble: str = 'nvt', temperature: int = 300, timestep: float = 1.0, pressure: float = 6.324209121801212e-07, taut: float | None = None, taup: float | None = None, compressibility_au: float | None = None, trajectory: str | Trajectory | None = None, logfile: str | None = None, loginterval: int = 1, append_trajectory: bool = False)[source]
Bases:
object
Molecular dynamics class Based on https://github.com/materialsvirtuallab/m3gnet/blob/main/m3gnet/models/_dynamics.py
- class abipy.ml.aseml.GsMl(atoms, nn_name, verbose, workdir, prefix=None)[source]
Bases:
MlBase
Single point calculation of energy, forces and stress with ML potential.
- class abipy.ml.aseml.MlEos(atoms: Atoms, vol_scales, relax_mode, fmax, pressure, steps, optimizer, nn_name, verbose, workdir, prefix=None)[source]
Bases:
MlBase
Compute the equation of state E(V) for a given structure with ASE and ML-potential.
- class abipy.ml.aseml.FrozenPhononMl(structure, qpoint, phdispl_cart, eta_list, nn_name, verbose, workdir, prefix=None)[source]
Bases:
MlBase
Frozen-phonon calculation with ML potential.
- class abipy.ml.aseml.MlCompareNNs(atoms, nn_names, num_tests, rattle, stdev_rvol, verbose, workdir, prefix=None)[source]
Bases:
MlBase
Compare energies, forces and stresses obtained with different ML potentials. Also profile the time required.
- run(print_dataframes=True) AseResultsComparator [source]
Run calculations.
extxyz_generator
Package
Tools to read data from output files generated by ab-initio codes and generate extended XYZ files.
- class abipy.ml.extxyz_generator.ExtxyzIOWriter(filepaths: list[str | PathLike])[source]
Bases:
object
This object converts output files produced by ab-initio codes such as ABINIT or VASP to extended XYZ files that can be used to train ML models.
Example
# To find all the vasprun.xml files starting from a top-level directory, use:
xyz_writer = ExtxyzIOWriter.from_top(“.”, “vasprun.xml”) print(xyz_writer) xyz_writer.write(“foo.xyz”)
# A similar syntax can be used for Abinit GSR files:
ExtxyzIOWriter.from_top(“.”, “GSR.nc”).write(“foo.xyz”)
# To specify an explicit list of files, use:
xyz_writer = ExtxyzIOWriter([“dir1/vasprun.xml”, “dir2/vasprun.xml”]) xyz_writer.write(“foo.xyz”)
- SUPPORTED_EXTS = ['vasprun.xml', 'GSR.nc', 'HIST.nc']
- classmethod from_top_vasprun(top: str | PathLike)[source]
Find all the vasprun.xml files starting from the top-level directory top.
- classmethod from_top_hist(top: str | PathLike)[source]
Find all the HIST.nc files starting from the top-level directory top.
- classmethod from_top_gsr(top: str | PathLike)[source]
Find all the GSR.nc files starting from the top-level directory top.
- classmethod from_top(top: str | PathLike, ext: str)[source]
Scan for files with extension ext starting from the top directory top.
- abipy.ml.extxyz_generator.check_vasp_success(vasprun: Vasprun, outcar: Outcar | None, verbose: int = 1) bool [source]
Check if a VASP calculation completed successfully.
Returns: True if the calculation completed successfully, False otherwise.
- class abipy.ml.extxyz_generator.SinglePointRunner(traj_path: str | ~os.PathLike, traj_range: range, topdir: str | ~os.PathLike = '.', code: str = 'vasp', vasp_set_cls=<class 'pymatgen.io.vasp.sets.MatPESStaticSet'>, verbose: int = 0)[source]
Bases:
object
Usage example:
traj_range = range(0, -1, 100) runner = SinglePointRunner("out.traj", "outdir", traj_range) runner.sbatch() runner.collect_xyz("foo.xyz")
- slurm_script_name = 'run.sh'
- custodian_script_name = 'run_custodian.py'
ml_phonopy
Package
Classes to compute vibrational properties with phonopy and ML potentials.
- abipy.ml.ml_phonopy.get_phonopy(structure: Structure, supercell_matrix, calculator: Calculator, distance=0.01, primitive_matrix=None, remove_drift=True) Phonopy [source]
Build and return a Phonopy instance.
- Parameters:
structure – Structure object.
supercell_matrix – Supercell matrix.
calculator – ASE calculator to be attached to the atoms.
distance – Distance of finite displacements in Angstrom.
primitive_matrix
remove_drift – True if the drift in the forces should be removed.
Based on a similar implementation available at: https://github.com/modl-uclouvain/randomcarbon/blob/main/randomcarbon/run/phonon.py
- class abipy.ml.ml_phonopy.MlPhonopyWithDDB(ddb_filepath, distance, asr, dipdip, line_density, qppa, relax_mode, fmax, pressure, steps, optimizer, nn_names, verbose, workdir, prefix=None, supercell=None)[source]
Bases:
MlBase
Compute phonons with phonopy and a ML potential starting from a DDB file and compare the results.
- class abipy.ml.ml_phonopy.MlPhonopy(structure, supercell, distance, line_density, qppa, relax_mode, fmax, pressure, steps, optimizer, nn_names, verbose, workdir, prefix=None)[source]
Bases:
MlBase
Compute phonons with phonopy and a ML potential.
relax_scanner
Package
Objects to perform ASE calculations with machine-learning potentials.
- abipy.ml.relax_scanner.nprocs_for_ntasks(nprocs, ntasks, title=None) int [source]
Return the number of procs to be used in a multiprocessing Pool. If negative or None, use all procs in the system.
- class abipy.ml.relax_scanner.Entry(isite: int, structure: Structure, energy: float, forces: ndarray)[source]
Bases:
object
Stores the relaxed structure with the associated energy and the Cartesian forces.
- class abipy.ml.relax_scanner.Pair(index1: int, index2: int, ediff: float, dist: float, frac_coords1: ndarray, frac_coords2: ndarray)[source]
Bases:
object
Stores info on a possible transition between two relaxed configurations.
- class abipy.ml.relax_scanner.RelaxScanner(structure, isite, mesh, nn_name, relax_mode: str = 'ions', fmax: float = 0.001, steps=500, verbose: int = 0, optimizer_name='BFGS', pressure=0.0, workdir=None, prefix=None)[source]
Bases:
HasPickleIO
This object employs an ASE calculator to perform many structural relaxations in which the initial configurations are obtained by displacing or inserting an atom on a grid covering the unit cell. The relaxed configurations are then compared with each other and only the unique solutions (Entry objects) are kept and stored to disk in pickle format.
- get_atoms_with_frac_coords(frac_coords, with_fixed_atoms=True) Atoms [source]
Return Atoms instance with frac_coords at site index isite. By default, Fixed Contraints are applied to all atoms except isite.
- get_structure_with_two_frac_coords(frac_coords1, frac_coords2) Structure [source]
Return Structure instance with frac_coords at site index isite.
- run_start_count(start: int, count: int) Path [source]
Invoke ASE to relax count structures starting from index start. Stores unique results in an internal list and save results to file in pickle format. Return Path to the directory with the results.
- Parameters:
start – Index of initial structure.
count – Number of structures to relax. If < 0, all structures are considered.
- class abipy.ml.relax_scanner.RelaxScannerAnalyzer(entries: list[Entry], scanner: RelaxScanner, verbose: int = 0)[source]
Bases:
object
Analyze the results produced by RelaxScanner. The object is usually constructed by calling from_topdir:
Example
from abipy.ml.relax_scanner import RelaxScannerAnalyzer rsa = RelaxScannerAnalyzer.from_topdir(“.”)
print_dataframe(rsa.df) rsa.histplot() rsa.pairs_enediff_dist(ediff_tol=1e-3, dist_tol=3.5, neb_method=None)
- classmethod from_topdir(topdir: Path) RelaxScannerAnalyzer [source]
Merge all entries starting from directory topdir.
- property workdir
- df()[source]
Dataframe with the total energy in eV and the relaxed coordinates of the atomic site that has been relaxed.
- pairs_enediff_dist(ediff_tol=0.001, dist_tol=3.5, neb_method=None, nprocs=-1) list[Pair] [source]
Find pairs (i.e. relaxed configurations) that differ in energy less than ediff_tol and with relaxed sites that are less than dist_tol Angstrom apart (minimum-image convention is applied).
- Parameters:
ediff_tol – Energy difference in eV. Tuple for range, scalar for max value.
dist_tol – Tolerance on site distance in Ang. Tuple for range, scalar for max value.
neb_method – None to print pairs only, “static” to compute energy profile along static path or ASE neb method to perform NEB calculation.
nprocs – Number of processes for Multiprocessing parallelism.
Return: list of Pair objects.
- run_pair(pair: Pair, neb_method='static', nimages=14, climb=False) dict [source]
Perform NEB calculation for the given pair. Return dictionary with results. NB: Contraints are enforced during the NEB.
- Parameters:
pair – Info on Pair.
neb_method – One of the NEB methods implemented by ASE e.g. “aseneb” or “static” to compute total energies along a static path.
nimages – Number of images
climb – True to use climbing images.
- histplot(ax=None, **kwargs)[source]
Plot histogram to show energy distribution.
Keyword arguments controlling the display of the figure:
kwargs
Meaning
title
Title of the plot (Default: None).
show
True to show the figure (default: True).
savefig
“abc.png” or “abc.eps” to save the figure to a file.
size_kwargs
Dictionary with options passed to fig.set_size_inches e.g. size_kwargs=dict(w=3, h=4)
tight_layout
True to call fig.tight_layout (default: False)
ax_grid
True (False) to add (remove) grid from all axes in fig. Default: None i.e. fig is left unchanged.
ax_annotate
Add labels to subplots e.g. (a), (b). Default: False
fig_close
Close figure. Default: False.
plotly
Try to convert mpl figure to plotly.
tools
Package
Low-level tools used in abipy.ml module
- abipy.ml.tools.get_energy_step(step: dict) float [source]
Copied from final_energy property in vasp.outputs.
Addresses a bug in vasprun.xml. See https://www.vasp.at/forum/viewtopic.php?f=3&t=16942