G0W0 convergence study

G0W0 convergence study wrt ecuteps and the number of bands in W.

run gwconv ecuteps
import sys
import os
import numpy as np

import abipy.abilab as abilab
import abipy.data as abidata
import abipy.flowtk as flowtk


def make_inputs(paral_kgb=1):
    """
    Returns a tuple of 4 input files for SCF, NSCF, SCR, SIGMA calculations.
    These files are then used as templates for the convergence study
    wrt ecuteps and the number of bands in W.
    """
    multi = abilab.MultiDataset(abidata.structure_from_ucell("SiC"),
                                pseudos=abidata.pseudos("14si.pspnc", "6c.pspnc"), ndtset=4)

    ecut = 12
    global_vars = dict(
        ecut=ecut,
        istwfk="*1",
        paral_kgb=paral_kgb,
        gwpara=2,
        iomode=1,
    )

    ecuteps = 4
    ngkpt = [4, 4, 4]
    shiftk = [0, 0, 0]

    multi.set_vars(global_vars)
    multi.set_kmesh(ngkpt=ngkpt, shiftk=shiftk)

    # SCF
    multi[0].set_vars(
        nband=10,
        tolvrs=1.e-8,
    )

    # NSCF
    multi[1].set_vars(
        nband=25,
        tolwfr=1.e-8,
        iscf=-2
    )

    # SCR
    multi[2].set_vars(
        optdriver=3,
        ecutwfn=ecut,
        nband=20,
        symchi=1,
        inclvkb=0,
        ecuteps=ecuteps,
    )

    # SIGMA
    multi[3].set_vars(
        optdriver=4,
        nband=20,
        ecutwfn=ecut,
        ecutsigx=ecut,
        #ecutsigx=(4*ecut), ! This is problematic
        symsigma=1,
        ecuteps=ecuteps,
        )

    multi[3].set_kptgw(kptgw=[[0,0,0], [0.5, 0, 0]], bdgw=[1, 8])

    return multi.split_datasets()


def build_flow(options):
    # Working directory (default is the name of the script with '.py' removed and "run_" replaced by "flow_")
    if not options.workdir:
        options.workdir = os.path.basename(sys.argv[0]).replace(".py", "").replace("run_", "flow_")

    # Get our templates
    scf_inp, nscf_inp, scr_inp, sig_inp = make_inputs()

    ecuteps_list = np.arange(2, 8, 2)
    max_ecuteps = max(ecuteps_list)

    flow = flowtk.Flow(workdir=options.workdir, manager=options.manager)

    # Band structure work to produce the WFK file
    bands = flowtk.BandStructureWork(scf_inp, nscf_inp)
    flow.register_work(bands)

    # Build a work made of two SCR runs with different value of nband
    # Use max_ecuteps for the dielectric matrix (sigma tasks will
    # read a submatrix when we test the convergence wrt to ecuteps.
    scr_work = flowtk.Work()

    for inp in scr_inp.generate(nband=[10, 15]):
        inp.set_vars(ecuteps=max_ecuteps)
        scr_work.register_scr_task(inp, deps={bands.nscf_task: "WFK"})

    flow.register_work(scr_work)

    # Do a convergence study wrt ecuteps, each work is connected to a
    # different SCR file computed with a different value of nband.

    # Build a list of sigma inputs with different ecuteps
    sigma_inputs = list(sig_inp.generate(ecuteps=ecuteps_list))

    for scr_task in scr_work:
        sigma_conv = flowtk.SigmaConvWork(wfk_node=bands.nscf_task, scr_node=scr_task,
                                          sigma_inputs=sigma_inputs)
        flow.register_work(sigma_conv)

    return flow


# This block generates the thumbnails in the AbiPy gallery.
# You can safely REMOVE this part if you are using this script for production runs.
if os.getenv("READTHEDOCS", False):
    __name__ = None
    import tempfile
    options = flowtk.build_flow_main_parser().parse_args(["-w", tempfile.mkdtemp()])
    build_flow(options).graphviz_imshow()


@flowtk.flow_main
def main(options):
    """
    This is our main function that will be invoked by the script.
    flow_main is a decorator implementing the command line interface.
    Command line args are stored in `options`.
    """
    return build_flow(options)


if __name__ == "__main__":
    sys.exit(main())

Total running time of the script: (0 minutes 0.481 seconds)

Gallery generated by Sphinx-Gallery