The MDF file (Bethe-Salpeter)#

The Bethe-Salpeter code saves the optical spectra in the MDF.nc file. This notebook explains how to use the AbiPy API to analyze the results.

Let’s start by importing the basic modules we will need for this tutorial.

import warnings
warnings.filterwarnings("ignore")  # Ignore warnings

from abipy import abilab
abilab.enable_notebook() # This line tells AbiPy we are running inside a notebook
import abipy.data as abidata

# This line configures matplotlib to show figures embedded in the notebook.
# Replace `inline` with `notebook` in classic notebook
%matplotlib inline

# Option available in jupyterlab. See https://github.com/matplotlib/jupyter-matplotlib
#%matplotlib widget

How to analyze a single MDF file#

Use abiopen to open the MDF:

mdf_file = abilab.abiopen(abidata.ref_file("tbs_4o_DS2_MDF.nc"))
print(mdf_file)
================================= File Info =================================
Name: tbs_4o_DS2_MDF.nc
Directory: /usr/share/miniconda/envs/abipy/lib/python3.12/site-packages/abipy/data/refs/si_bse
Size: 104.53 kB
Access Time: Sun Oct 27 17:43:21 2024
Modification Time: Sun Oct 27 17:40:35 2024
Change Time: Sun Oct 27 17:40:35 2024

================================= Structure =================================
Full Formula (Si2)
Reduced Formula: Si
abc   :   3.823046   3.823046   3.823046
angles:  60.000000  60.000000  60.000000
pbc   :       True       True       True
Sites (2)
  #  SP       a     b     c
---  ----  ----  ----  ----
  0  Si    0     0     0
  1  Si    0.25  0.25  0.25

Abinit Spacegroup: spgid: 0, num_spatial_symmetries: 48, has_timerev: True, symmorphic: True
================================== Q-points ==================================
0) [+0.939, +0.000, +0.000]
1) [+0.000, +0.939, +0.000]
2) [+0.000, +0.000, +0.939]
3) [+0.000, +0.813, +0.813]
4) [+0.813, +0.000, +0.813]
5) [+0.813, +0.813, +0.000]

To plot the (averaged) imaginary part of the macroscopic dielectric function (MDF) between 2 and 5 eV use:

mdf_file.plot_mdfs(title="Si absorption spectrum: EXC vs RPA", xlims=(2, 5));
_images/dc8462f2eaffe14764084d92a13f424e035963320257bc5351df87ea8c6fbe14.png

To select the MDF computed for the first q-point, use

mdf_file.plot_mdfs(title="Im(Mdf) at the first q-point", qpoint=0, xlims=(2, 5));
_images/481ffd0ad9c26e5880a2a426e09d0d2971453a88f88cedf1aa2f597f79b48572.png
  • EXC: MDF with excitonic effects included

  • KS-RPA: MDF computed with KS eigenvalues

  • GW-RPA: MDF computed at the RPA level with KS + scissors operator

To plot the (averaged) real part of the MDF:

mdf_file.plot_mdfs(cplx_mode="re", title="Real part of MDF: EXC vs RPA", xlims=(2, 5));
_images/5015b8f30c518479e6261d81c4b0379f58873047754dc6d006b9c3b573ed12e4.png

Analyzing multiple MDF files with robots#

To analyze the converge of the optical spectra, we can use the MdfRobot. Let’s build our robot from a list of MDF.nc files:

paths = abidata.ref_files("si_444_MDF.nc", "si_666_MDF.nc", "si_888_MDF.nc")
robot = abilab.MdfRobot.from_files(paths)
print(robot)
MdfRobot with 3 files in memory:

================================= File Info =================================
Name: si_444_MDF.nc
Directory: /usr/share/miniconda/envs/abipy/lib/python3.12/site-packages/abipy/data/refs/si_bse_kpoints
Size: 102.53 kB
Access Time: Sun Oct 27 17:43:22 2024
Modification Time: Sun Oct 27 17:40:35 2024
Change Time: Sun Oct 27 17:40:35 2024

================================= Structure =================================
Full Formula (Si2)
Reduced Formula: Si
abc   :   3.823046   3.823046   3.823046
angles:  60.000000  60.000000  60.000000
pbc   :       True       True       True
Sites (2)
  #  SP       a     b     c
---  ----  ----  ----  ----
  0  Si    0     0     0
  1  Si    0.25  0.25  0.25

Abinit Spacegroup: spgid: 0, num_spatial_symmetries: 48, has_timerev: True, symmorphic: True
================================== Q-points ==================================
0) [+0.939, +0.000, +0.000]
1) [+0.000, +0.939, +0.000]
2) [+0.000, +0.000, +0.939]
3) [+0.000, +0.813, +0.813]
4) [+0.813, +0.000, +0.813]
5) [+0.813, +0.813, +0.000]


================================= File Info =================================
Name: si_666_MDF.nc
Directory: /usr/share/miniconda/envs/abipy/lib/python3.12/site-packages/abipy/data/refs/si_bse_kpoints
Size: 122.71 kB
Access Time: Sun Oct 27 17:43:22 2024
Modification Time: Sun Oct 27 17:40:35 2024
Change Time: Sun Oct 27 17:40:35 2024

================================= Structure =================================
Full Formula (Si2)
Reduced Formula: Si
abc   :   3.823046   3.823046   3.823046
angles:  60.000000  60.000000  60.000000
pbc   :       True       True       True
Sites (2)
  #  SP       a     b     c
---  ----  ----  ----  ----
  0  Si    0     0     0
  1  Si    0.25  0.25  0.25

Abinit Spacegroup: spgid: 0, num_spatial_symmetries: 48, has_timerev: True, symmorphic: True
================================== Q-points ==================================
0) [+0.939, +0.000, +0.000]
1) [+0.000, +0.939, +0.000]
2) [+0.000, +0.000, +0.939]
3) [+0.000, +0.813, +0.813]
4) [+0.813, +0.000, +0.813]
5) [+0.813, +0.813, +0.000]


================================= File Info =================================
Name: si_888_MDF.nc
Directory: /usr/share/miniconda/envs/abipy/lib/python3.12/site-packages/abipy/data/refs/si_bse_kpoints
Size: 162.03 kB
Access Time: Sun Oct 27 17:43:22 2024
Modification Time: Sun Oct 27 17:40:35 2024
Change Time: Sun Oct 27 17:40:35 2024

================================= Structure =================================
Full Formula (Si2)
Reduced Formula: Si
abc   :   3.823046   3.823046   3.823046
angles:  60.000000  60.000000  60.000000
pbc   :       True       True       True
Sites (2)
  #  SP       a     b     c
---  ----  ----  ----  ----
  0  Si    0     0     0
  1  Si    0.25  0.25  0.25

Abinit Spacegroup: spgid: 0, num_spatial_symmetries: 48, has_timerev: True, symmorphic: True
================================== Q-points ==================================
0) [+0.939, +0.000, +0.000]
1) [+0.000, +0.939, +0.000]
2) [+0.000, +0.000, +0.939]
3) [+0.000, +0.813, +0.813]
4) [+0.813, +0.000, +0.813]
5) [+0.813, +0.813, +0.000]
plotter = robot.get_multimdf_plotter()

To analyze the convergence of the (averaged) MDFs:

plotter.plot();
_images/1c4dc24f2238ad5b6a58683cdaefdf8b973a70f264847968bf8b96faf8b77f8f.png

It is also possible to analyze the converge of the MDF for the different q-directions with:

plotter.plot(qview="all");
_images/2a6be7653a8faa7116a0c27da335ff022347067ec1ef2d21c328f4bf29d02a7a.png