Function1D objectΒΆ

This example shows how to use the Function1D object to analyze and plot results.

../_images/sphx_glr_plot_funcs_001.png

Out:

/Users/gmatteo/git_repos/abipy/abipy/examples/plot/plot_funcs.py:42: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
  plt.show()

import numpy as np
import matplotlib.pyplot as plt

from abipy.abilab import Function1D

# Build mesh [0, 2pi] with 100 points.
mesh = np.linspace(0, 2*np.pi, num=100)

# Compute sine function.
sine = Function1D.from_func(np.sin, mesh)

# Call matplotlib to plot data.
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

# Plot sine.
sine.plot_ax(ax, label="sin(x)")

# Spline sine on the coarse mesh sx, and plot the data.
sx = np.linspace(0, 2*np.pi, num=25)
splsine = sine.spline(sx)

plt.plot(sx, splsine, "ro", label="splined sine")

# Compute the 1-st and 2-nd order derivatives
# with finite differences (5-point stencil).
for order in [1,2]:
    der = sine.finite_diff(order=order)
    der.plot_ax(ax, label="D sin(x) %d" % order)

# Integrate the sine function and plot the results.
(1 - sine.integral()).plot_ax(ax, marker=".", label=r"$1 - \int\,\sin(x)\,dx$")

plt.legend(loc="best")
plt.show()

Total running time of the script: ( 0 minutes 0.252 seconds)

Gallery generated by Sphinx-Gallery