Note
Go to the end to download the full example code.
Band structure interpolation with Wannier functions
This example shows how to analyze the wannier90 results using the ABIWAN.nc netcdf file produced by Abinit when calling wannier90 in library mode. Use abiopen FILE.wout for a command line interface and the –expose option to generate matplotlib figures automatically.
================================= File Info =================================
Name: tw90_4o_DS3_ABIWAN.nc
Directory: /home/runner/work/abipy/abipy/abipy/data/refs/wannier90/tutoplugs_tw90_4
Size: 205.47 kB
Access Time: Thu Jan 23 22:34:29 2025
Modification Time: Thu Jan 23 22:30:41 2025
Change Time: Thu Jan 23 22:30:41 2025
================================= Structure =================================
Full Formula (Si2)
Reduced Formula: Si
abc : 3.840259 3.840259 3.840259
angles: 60.000000 60.000000 60.000000
pbc : True True True
Sites (2)
# SP a b c
--- ---- ---- ---- ----
0 Si 0 0 0
1 Si 0.25 0.25 0.25
Abinit Spacegroup: spgid: 227, num_spatial_symmetries: 24, has_timerev: False, symmorphic: False
============================== Electronic Bands ==============================
Number of electrons: 8.0, Fermi level: 5.861 (eV)
nsppol: 1, nkpt: 64, mband: 14, nspinor: 1, nspden: 1
smearing scheme: none (occopt 1), tsmear_eV: 0.272, tsmear Kelvin: 3157.7
Direct gap:
Energy: 2.519 (eV)
Initial state: spin: 0, kpt: [+0.000, +0.000, +0.000], weight: 0.016, band: 3, eig: 5.861, occ: 2.000
Final state: spin: 0, kpt: [+0.000, +0.000, +0.000], weight: 0.016, band: 4, eig: 8.380, occ: 0.000
Fundamental gap:
Energy: 0.635 (eV)
Initial state: spin: 0, kpt: [+0.000, +0.000, +0.000], weight: 0.016, band: 3, eig: 5.861, occ: 2.000
Final state: spin: 0, kpt: [+0.500, +0.500, +0.000], weight: 0.016, band: 4, eig: 6.496, occ: 0.000
Bandwidth: 11.953 (eV)
Valence maximum located at kpt index 0:
spin: 0, kpt: [+0.000, +0.000, +0.000], weight: 0.016, band: 3, eig: 5.861, occ: 2.000
Conduction minimum located at kpt index 10:
spin: 0, kpt: [+0.500, +0.500, +0.000], weight: 0.016, band: 4, eig: 6.496, occ: 0.000
TIP: Use `--verbose` to print k-point coordinates with more digits
================================== K-points ==================================
K-mesh with divisions: [4, 4, 4], shifts: [0.0, 0.0, 0.0]
kptopt: 3 (Do not take into account any symmetry)
Number of points in the IBZ: 64
0) [+0.000, +0.000, +0.000], weight=0.016
1) [+0.250, +0.000, +0.000], weight=0.016
2) [+0.500, +0.000, +0.000], weight=0.016
3) [-0.250, +0.000, +0.000], weight=0.016
4) [+0.000, +0.250, +0.000], weight=0.016
5) [+0.250, +0.250, +0.000], weight=0.016
6) [+0.500, +0.250, +0.000], weight=0.016
7) [-0.250, +0.250, +0.000], weight=0.016
8) [+0.000, +0.500, +0.000], weight=0.016
9) [+0.250, +0.500, +0.000], weight=0.016
10) [+0.500, +0.500, +0.000], weight=0.016
... (More than 10 k-points)
============================= Wannier90 Results =============================
No of Wannier functions: 8, No bands: 14, Number of k-point neighbours: 8
Disentanglement: True, exclude_bands: no
WF_index Center Spread
0 [1.12195 1.59353 1.59353] 2.767
1 [1.59353 1.59353 1.12195] 2.767
2 [1.12195 1.12195 1.12195] 2.767
3 [1.59353 1.12195 1.59353] 2.767
4 [0.23579 0.23579 0.23579] 2.767
5 [0.23579 2.47968 2.47968] 2.767
6 [2.47968 0.23579 2.47968] 2.767
7 [2.47968 2.47968 0.23579] 2.767
HWanR built in 0.006 (s)
Interpolation completed in 0.008 [s]
Interpolation completed in 0.002 [s]
import os
import abipy.data as abidata
from abipy.abilab import abiopen
# Open the ABIWAN file
filepath = os.path.join(abidata.dirpath, "refs", "wannier90", "tutoplugs_tw90_4", "tw90_4o_DS3_ABIWAN.nc")
abiwan = abiopen(filepath)
print(abiwan)
# Plot the matrix elements of the KS Hamiltonian in real space in the Wannier Gauge.
abiwan.hwan.plot(title="Matrix elements in real space")
# Interpolate bands with Wannier functions using an automatically selected k-path
# with 5 points for the smallest segment.
ebands_wan_kpath = abiwan.interpolate_ebands(line_density=5)
ebands_wan_kpath.plot(title="Wannier-interpolated")
# Interpolate bands in the IBZ defined by ngkpt
ebands_wan_kmesh = abiwan.interpolate_ebands(ngkpt=[8, 8, 8])
edos = ebands_wan_kmesh.get_edos()
ebands_wan_kpath.plot_with_edos(edos, title="Wannier-interpolated bands and DOS")
# To compare the interpolated bands with ab-initio results,
# pass a file with the ab-initio bands to the get_plotter_from_ebands method
# that will return an ElectronBandsPlotter object.
#plotter = abiwan.get_plotter_from_ebands("out_GSR.nc")
#plotter.combiplot()
Total running time of the script: (0 minutes 0.950 seconds)